Advertisement

Metal Science and Heat Treatment

, Volume 60, Issue 5–6, pp 407–410 | Cite as

Eutectic Morphology in Alloy Pb – 3.2% Cd – 0.08% Sr for Battery Grids

  • Y. Ait Yassine
  • E. Zantalla
  • K. Azzaoui
  • S. Jodeh
  • A. Aguizir
  • S. Saissi
  • A. Errich
  • A. Lamhamdi
  • O. Hamed
  • E. Saad
  • N. Selhaoui
  • L. Bouirden
  • R. Salghi
TECHNICAL INFORMATION
  • 7 Downloads

Ageing of supersaturated solid solution in Pb – 3.2% Cd – 0.08% Sr alloy is studied at 20 and 80°C by measuring hardness, and light and scanning electron microscopy. Structural changes are established corresponding to stages of ageing and supersaturation.

Key words

lead alloys heat treatment microhardness battery grids 

References

  1. 1.
    A. Kirchev, L. Serra, S. Dumenil, et al., “Carbon honeycomb grids for advanced lead-acid batteries. Part III: Technology scale-up,” J. Power Sources, 299, 324 – 333 (2015).Google Scholar
  2. 2.
    J. Xiang, C. Hu, L. Chen, et al., “Enhanced performance of Zn(II)-doped lead-acid batteries with electrochemical active carbon in negative mass,” J. Power Sources, 328, 8 – 14 (2016).Google Scholar
  3. 3.
    C. White, J. Deveau, and L. G. Swan, “Evolution of internal resistance during formation of flooded lead-acid batteries,” J. Power Sources, 327, 160 – 170 (2016).Google Scholar
  4. 4.
    P. T. Moseley, D. A. J. Rand, and K. Peters, “Enhancing the performance of lead–acid batteries with carbon – In pursuit of an understanding,” J. Power Sources, 295, 268 – 274 (2015).Google Scholar
  5. 5.
    L. Yao, Y. Xi, G. Xi, and Y. Feng, “Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol-gel-hydrothermal route using spent Li-ion battery,” J. Alloys Comp., 680, 73 – 79 (2016).Google Scholar
  6. 6.
    M. Pino, D. Herranz, and J. Chacón, “Carbon treated commercial aluminum alloys as anodes for aluminum-air batteries in sodium chloride electrolyte,” J. Power Sources, 326, 296 – 302 (2016).Google Scholar
  7. 7.
    R. Ochoa, A. Flores, J. Torres, and J. Escobedo, “Manufacture of Al – Zn – Mg alloys using spent alkaline batteries and cans,” Materials Today, Proc., 2, 4971 – 4977 (2015).Google Scholar
  8. 8.
    H. Gan, Y. Yang, and H. Shao, “Improvement of the rate performance of hydrogen storage alloys by heat treatments in Ar and H2/Ar atmosphere for high-power nickel-metal hydride batteries,” Electrochim. Acta, 174, 164 – 171 (2015).Google Scholar
  9. 9.
    P. Wang, L. Shao, H. Yu, et al., “Observation on the electrochemical reactions of Li3–xNaxV2(PO4)3 (0 ≤ x ≤ 3) as cathode materials for rechargeable batteries,” J. Alloys Comp., 690, 31 – 41 (2017).Google Scholar
  10. 10.
    L. D. Trong, T. T. Thaoand N. N. Dinh, “Characterization of the Li-ionic conductivity of La(2/3–x)Li3xTiO3 ceramics used for all-solid-state batteries,” Solid States Ionic, 278, 228 – 232 (2015).Google Scholar
  11. 11.
    L. Bouirden, J. P. Hilger, and J. Hertz, “Discontinuous and continuous hardening processes in calcium and calcium-tin microalloyed lead: influence of ‘secondary-lead’ impurities,” J. Power Sources, 33, 27 – 50 (1991).Google Scholar
  12. 12.
    J. Hilger, “Déformation des alliages de plomb: compétition vieillissement – Recristallisation,” J. Phys., IV, 05 (1995).Google Scholar
  13. 13.
    K. Takada, “Progress and prospective of solid-state lithium batteries,” Acta Mater., 61, 759 – 770 (2013).Google Scholar
  14. 14.
    P. J. Hilger, “Hardening process in ternary lead-antimony-tin alloys for battery grids,” Proceedings of the Fourth European Lead Battery Conference, J. Power Sources, 53, 45 – 51 (1995).Google Scholar
  15. 15.
    R. Nozato, T. Yamaji, and H. Tsubakino, “Kinetics of Ag precipitation in a Pb – 0.038 at.% Ag alloy,” Japan Inst. Metal, 23, 500 – 504 (1982).Google Scholar
  16. 16.
    J. D. Livingston, “Precipitation and superconductivity in leadtin and lead-cadmium alloys,” J. Applied Phys., 34, 3028 – 3036 (1963).Google Scholar
  17. 17.
    J. P. Hilger, “Hardening in binary lead-barium and ternary leadbarium-tin alloys,” Annales de Chimie, Science des Matériaux, 23, 517 – 528 (1998).Google Scholar
  18. 18.
    E. Hilali, L. Bouirden, and J.-P. Hilger, “Structural hardening of lead-cadmium (tin-silver) alloys for battery’s grids. I. Lead-cadmium alloys,” Annales de Chimie, Science des Matériaux, 24, 135 – 143 (1999).Google Scholar
  19. 19.
    B. B. Gulyaev, Alloy Synthesis (Basic Principles. Choice of Components) [in Russian], Metallurgiya, Moscow (1984).Google Scholar
  20. 20.
    G.W. Mao, J. G. Larson, and P. Rao, “The microstructure of lead base alloys,” Metallography, 1, 399 – 423 (1969).Google Scholar
  21. 21.
    B. Vollmert and F. Arreet, Z. Anorg. u. Allg. Chem., 210, 77 – 80 (1933).Google Scholar
  22. 22.
    Y. Cartigny, J. M. Fiorani, A. Maître, and M. Vilasi, “Thermodynamic assessment of Ca – Pb system,” Thermochim. Acta, 414, 197 – 202 (2004).Google Scholar
  23. 23.
    D. Marshall and Y. A. Chang, “Constitution of the lead-tinstrontium system up to 36 atomic percent Sr,” Met. Trans. A, 15, 43 – 54 (1984).Google Scholar
  24. 24.
    T. B. Massalski, Binary Phase Diagrams, ASM (1990).Google Scholar
  25. 25.
    J. Dutkiewicz, Z. Mozer, and W. Zakulski, ”The Cd – Pb (cadmium lead) system,” Bull. Alloys Phase Diagrams, 9, 694 – 701 (1988).Google Scholar
  26. 26.
    E. Zantalla, Y. Ait Yassine, A. Aguizir, et al., “Structural hardening mechanisms of alloys PbCaSrAg for battery’s grids,” J. Mater. Environ. Sci., 7, 2094 – 2105 (2016).Google Scholar
  27. 27.
    J. Burke, The Kinetics of Phase Transformations in Metals, Pergamon Press (1965).Google Scholar
  28. 28.
    J. B., Austin and R. L. Rickett, “Kinetics of the decomposition of austenite at constant temperature,” Trans. AIME, 135, 296 – 415 (1939).Google Scholar
  29. 29.
    O. Schaaber, Mém. Sci. Rev. Met., 67, 681 (1970).Google Scholar
  30. 30.
    Handbook of Chemistry and Physics, CRC PRESS. 18901 Cranwood Parkway, Cleveland, Ohio 44128 (1989 – 1990).Google Scholar
  31. 31.
    Y. AitYassine, E. Zantalla, A. Aguizir, et. al., “Structural hardening mechanisms of lead-cadmium-strontium alloys for battery’s grids,” Annales de Chimie, Sciences des Matériaux, 34, 85 – 98 (2009).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Y. Ait Yassine
    • 1
  • E. Zantalla
    • 1
  • K. Azzaoui
    • 2
  • S. Jodeh
    • 3
  • A. Aguizir
    • 1
  • S. Saissi
    • 4
  • A. Errich
    • 5
  • A. Lamhamdi
    • 2
  • O. Hamed
    • 3
  • E. Saad
    • 4
  • N. Selhaoui
    • 1
  • L. Bouirden
    • 1
  • R. Salghi
    • 1
  1. 1.Ibn Zohr UniversityAgadirMorocco
  2. 2.Mohamed 1st UniversityOujdaMorocco
  3. 3.An-Najah National UniversityNablusPalestine
  4. 4.University Hassan 1 FST SettatCasablancaMorocco
  5. 5.University Mohammed VRabat-AgdalMorocco

Personalised recommendations