Advertisement

Metal Science and Heat Treatment

, Volume 60, Issue 5–6, pp 393–398 | Cite as

Comparative Analysis of Non-Uniformity of Mechanical Properties of Welded Joints of Al – Mg – Si Alloys During Friction Stir Welding and Laser Welding

  • S. Yu. Ivanov
  • O. V. Panchenko
  • V. G. Mikhailov
WELDED JOINTS

The properties of the welded joints of 6082-T6 alloy produced by friction stir welding (FSW) and laser welding (LW) were studied. The maximum temperature and microhardness fields in the friction stir-welded joints were shown to be asymmetrical. The concentrated energy input during laser welding yields a narrow heat-affected zone (HAZ) with sharp changes in mechanical properties. The strength of the FSW joint constitutes 72% and that of the LWjoint—67% of the base metal strength. In case of LW, the minimum hardness of the joint corresponds to the metal of the welded joint, while in case of FSW, it corresponds to the heat-affected zone. At the same maximum heating temperature, the hardness of the heat-affected zone of the friction stir-welded joint is lower compared to laser welding due to substantially lower rates of heating and cooling.

Key words

friction stir welding laser welding Al – Mg – Si alloy temperature field welded joint microstructure mechanical properties non-uniformity 

Notes

This study was performed at the SPPU under the Contract No. 14.Z50.31.0018 with the Ministry of Education and Science of the Russian Federation.

References

  1. 1.
    R. E. Trevisan, D. D. Schwemmer, and D. L. Olson, The Fundamental of Weld Metal Pore Formation. Welding: Theory and Practice, Chap. 3, Elsevier Science Pub. (1990).Google Scholar
  2. 2.
    R. J. Shore and R. B. McCauley, “Effect of porosity on high strength aluminum 7039,” Welding J., 49(7), 311 – 321 (1970).Google Scholar
  3. 3.
    O. R. Myhr and O. Grong, “Process modelling applied to 6082-T6 aluminum weldments. I. Reaction kinetics,” Acta Mater., 39, 2693 – 2702 (1991).CrossRefGoogle Scholar
  4. 4.
    O. Grong, Metallurgical Modelling of Welding, The Institute of Materials, London (1997), 608 p.Google Scholar
  5. 5.
    J. Martikainen, E. Hiltunen, V. A. Karkhin, and S. Yu. Ivanov, “A method for evaluating the liquation cracking susceptibility of welded joints in Al – Mg – Si alloys,” Welding Int., No. 2, 139 – 143 (2013).CrossRefGoogle Scholar
  6. 6.
    C. Huang and S. Kou, “Liquation cracking in full-penetration Al – Mg – Si welds,” Welding J., 83(4), 111 – 122 (2004).Google Scholar
  7. 7.
    C. C. Chang, “Microstructure in hot cracking mechanism of welded aluminum alloys,” Mater. Sci. Technol., 29(4), 504 – 510 (2013).CrossRefGoogle Scholar
  8. 8.
    S. Katayama, Handbook of Laser Welding Technologies, Woodhead Publishing, 654 (2013).Google Scholar
  9. 9.
    U. Dilthey, A. Goumeniouk, V. Lopota, et al. “Development of a theory for alloying element losses during laser beam welding,” J. Phys. D: Appl. Phys., 34(1), 81 – 86 (2001).CrossRefGoogle Scholar
  10. 10.
    S. W. Kallee, “Industrial applications in friction stir welding,” in: D. Lohwasser and Z. Chen (eds). Friction Stir Welding. From Basic to Applications, Woodhead Publishing, Cambridge (2010), pp. 118 – 163.Google Scholar
  11. 11.
    C. Gallais, A. Simar, D. Fabregue, et al. “Multiscale analysis of the strength and ductility of AA6056 aluminum friction stir welds,” Metall. Mater. Trans., 38A, 964 – 981 (2007).CrossRefGoogle Scholar
  12. 12.
    C. A.Weis Olea, “Influence of energy input in friction stir welding on structure evolution and mechanical behaviour of precipitation-hardening in aluminium alloys (AA2024-T351, AA6013-T6 and Al – Mg – Sc),” GKSS-Forschungszentrum Geesthacht GmbH, 149 (2008).Google Scholar
  13. 13.
    T. Morita and M. Yamanaka, “Microstructural evolution and mechanical properties of friction-stir-welded Al – Mg – Si joint,” Mater. Sci. Eng. A, 595(10), 196 – 204 (2014).CrossRefGoogle Scholar
  14. 14.
    O. V. Velichko, S. Yu. Ivanov, V. A. Karkhin, et al. “Friction stir welding of thick plates of Al – Mg – Sc alloy,” Welding Int., 30(8), 630 – 634 (2016).CrossRefGoogle Scholar
  15. 15.
    ASM Handbook, Vol. 9: Metallography and Microstructures ASM International, Materials Park, Ohio, USA (2004), 1184 p.Google Scholar
  16. 16.
    P. Upadhyay and A. Reynolds, “Effect of backing plate thermal property on friction stir welding of 25-mm-thick AA6061, Metall. Mater. Trans. A, 45, 2091 – 2100 (2014).CrossRefGoogle Scholar
  17. 17.
    V. A. Karkhin, A. S. Ilin, H. J. Pesch, et al. “Effects of latent heat of fusion on thermal processes in laser welding of aluminum alloys,” Sci. Technol. Welding Joining, 10(5), 597 – 603 (2005).CrossRefGoogle Scholar
  18. 18.
    P. Rayamyaki, V. A. Karkhin, P. N. Khomich, “Determination of the main characteristics of the temperature field for the evaluation of the type of solidification of weld metal in fusion welding,” Welding Int., 21(7), 600 – 604 (2007).CrossRefGoogle Scholar
  19. 19.
    V. Ploshikhin, A. Prikhodovskii, M. Makhutin, et al. “Integrated mechanical-metallurgical approach to modeling of solidification cracking in welds,” in: T. Boellinghaus and H. Herold (eds.), Hot Cracking Phenomena in Welds, Springer (2005), pp. 223 – 244.Google Scholar
  20. 20.
    P. L. Threadgill, A. J. Leonard, H. R. Shercliff, and P. J. Withers, “Friction stir welding of aluminum alloys,” Int. Mater. Rev., 54(2), 49 – 93 (2009).CrossRefGoogle Scholar
  21. 21.
    Y. S. Sato, H. Kokawa, M. Enomoto, and S. Jogan, “Microstructural evolution of 6063 aluminum during friction-stir welding,” Metall. Mater. Trans. A, 30(9), 2429 – 2437 (1999).CrossRefGoogle Scholar
  22. 22.
    A. Fehrenbacher, N. A. Duffie, N. J. Ferrier, et al. “Temperature measurement and closed-loop control in friction stir welding,” in: 8th International Friction Stir Welding Symposium, Timmendorfer Strand, Germany (2010), 19 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Yu. Ivanov
    • 1
  • O. V. Panchenko
    • 2
  • V. G. Mikhailov
    • 3
  1. 1.Peter the Great St. Petersburg Polytechnic University (SPPU)St. PetersburgRussia
  2. 2.Science and Technology Center “Novel Manufacturing Technologies”SPPUSt. PetersburgRussia
  3. 3.Brandenburg University of TechnologyCottbusGermany

Personalised recommendations