Advertisement

Metal Science and Heat Treatment

, Volume 60, Issue 5–6, pp 285–289 | Cite as

Features of Thermal Diffusion Impregnation with Hydrogen of Porous Material Based on Titanium

  • M. Yu. Kollerov
  • Yu. É. Runova
  • V. V. Zasypkin
  • N. A. Popov
Article
  • 4 Downloads

The effect of bulk porosity on the kinetics of hydrogen thermal diffusion impregnation and on the structure of specimens prepared from different semiproducts, i.e., bars, wires, and fibers of commercially pure titanium, is studied. It is established that the rate of hydrogen absorption by porous titanium is at a maximum at 650°C and it increases with an increase in bulk porosity, pore size and a reduction in typical size of original semiproduct. Simultaneous thermal diffusion impregnation of monolithic and porous material leads to nonuniform distribution of hydrogen between them and correspondingly a change in structure.

Key words

titanium porous materials diffusion welding thermal hydrogen treatment 

References

  1. 1.
    S. Fujibazhi, M. Neo, H.-M. Kim, et al., “Osteoinduction of porous bioactive titanium metal,” Biomaterials No. 25, 443 – 450 (2004).CrossRefGoogle Scholar
  2. 2.
    G. Ryan, A. Pandit and D. P. Apatsidis, “Fabrication methods of porous metals for use in orthopaedic applications,” Biomaterials, No. 27, 2651 – 2670 (2006).CrossRefGoogle Scholar
  3. 3.
    G. He, P. Liu, and Q. Tan, “Porous titanium materials with entangled wire structure for load-bearing medical applications,” J. Mechan. Behavior Biomed. Mater., No. 5, 16 – 31 (2012).CrossRefGoogle Scholar
  4. 4.
    M. Yu. Kollerov, S. D. Shlyapin, K. S. Senkevich, et al., “Use of thermal hydrogen treatment during preparation of porous materials and objects of titanium fibers and wires,” Metallurg, No. 3, 61 – 66 (2015).Google Scholar
  5. 5.
    M. Yu. Kolerov, S. D. Shlyapin, D. E. Gusev, et al., “Effect of heat treatment regime and diffusion welding in the structure and properties of titanium fiber porous material workpieces,” Metally, No. 6, 32 – 36 (2015).Google Scholar
  6. 6.
    A. A. Il’in, B. A. Kolachev, V. K. Nosov, and A. M. Mamonov, Hydrogen Technology for Titanium Alloys [in Russian], MISiS, Moscow (2002).Google Scholar
  7. 7.
    A. A. Il’in, A. M. Mamonov, V. S. Karpov, et al., “Porous layered composite materials based on titanium in an endoprosthesis coxophemoral joint,” Tekhnol. Legk. Splavov, No. 3, 90 – 96 (2008).Google Scholar
  8. 8.
    M. Yu. Kolerov, M. M. Serov, S. D. Shlyapin, and Yu. É. Runova, “Study of the possibilit7y of preparing porous materials from titanium fibers,” Tekhnol. Mashinotr., No. 9, 5 – 9 (2013).Google Scholar
  9. 9.
    M. Yu. Kolerov, A. M. Mamonov, V. V. Zasypkin, et al., “Features of titanium structure formation during thermal diffusion impregnation with hydrogen,” Metalloved. Term. Obrab. Met., No. 6(732), 25 – 29 (2016).Google Scholar
  10. 10.
    B. A. Kolachev, V. V. Sadkov, V. C. Talalaev, et al., Vacuum Annealing of Titanium Structures [in Russian], Mashinostroenie, Moscow (1991).Google Scholar
  11. 11.
    A. A. Il’in, S. V. Skvortsova, and A. M. Mamonov, “Control of titanium alloy structure by thermal hydrogen treatment,” Fiz.-Khim. Mekhan. Mater., No. 3, 28 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. Yu. Kollerov
    • 1
  • Yu. É. Runova
    • 1
  • V. V. Zasypkin
    • 1
  • N. A. Popov
    • 2
  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia
  2. 2.B. N. El’tsin Ural Federal UniversityEkaterinburgRussia

Personalised recommendations