Metal Science and Heat Treatment

, Volume 59, Issue 11–12, pp 715–720 | Cite as

Investigation of Triggering Stress for Martensitic Transformation in Titanium Alloy

  • Cong Li
  • Wei Li
  • Jian Chen
  • Yan Jie Ren
  • Jian Jun He
  • Cui Lan Wu
Article
  • 4 Downloads

The effect of the stability of β-phase (of the value of Moeq), of the thermal martensite, and of the rate of deformation on the triggering stress of martensitic transformation in alloy Ti – 10% V – 2% Fe – 3% Al is investigated. It is shown that the triggering stress increases with growth of Moeq in the presence of thermal martensite and with growth in the deformation rate from 10 – 4 to 10 – 1 sec – 1.

Key words

titanium alloy martensite triggering stress microstructure compressive test 

Notes

The project has been supported by the National Natural Science Foundation of China (Grants 51405037, 51205030), the Natural Science Foundation of the Hunan Province (2015JJ6002), and the Open Research Fund of the Innovation Platform of Efficient and Clean Utilization of Energy (14K004).

References

  1. 1.
    H. S. Kim, S. H. Lim, I. D. Yeo, and W. Y. Kim, “Stress-induced martensitic transformation of metastable β-titanium alloy,” Mater. Sci. Eng. A, 449, 322 – 325 (2007).CrossRefGoogle Scholar
  2. 2.
    T. W. Duerig, G. T. Terlinde, and J. C. Williams, “Phase transformation and tensile properties of Ti – 10V – 2F – 3Al,” Metall. Trans. A, 11A, 1987 – 1998 (1980).CrossRefGoogle Scholar
  3. 3.
    T. Grosdidier and M. J. Philippe, “Deformation induced martensite and superplasticity in a β-metastable titanium alloy,” Mater. Sci. Eng. A, 291, 218 – 223 (2000).CrossRefGoogle Scholar
  4. 4.
    F. Hideki, “Strengthening of α + β titanium alloys by thermomechanical processing,” Mater. Sci. Eng. A, 243, 103 – 108 (1998).CrossRefGoogle Scholar
  5. 5.
    R. Mythili, V. T. Paul, S. Saroja, et al., “Study of transformation behavior in a Ti – 4.4 Ta – 1.9 Ni alloy,” Mater. Sci. Eng. A, 39, 299 – 312 (2005).CrossRefGoogle Scholar
  6. 6.
    S. Neelakantan, D. S. Martin, P. E. J. Rivera-Diaz-del-Castillo, and S. van der Zwaag, “Plasticity induced transformation in a metastable β Ti-1023 alloy by controlled heat treatments,” Mater. Sci. Technol., 25, 1351 – 1358 (2009).CrossRefGoogle Scholar
  7. 7.
    Z. Wyatt and S. Ankem, “The effect of metastability on room temperature deformation behavior of β and α + β titanium alloys,” J. Mater. Sci., 45, 5022 – 5031 (2010).CrossRefGoogle Scholar
  8. 8.
    A. Paradkar, S. V. Kamat, A. K. Gogia, and B. P. Kashyap, “Effect Al and Nb on the trigger stress for stress-induced martensitic transformation during tensile loading in Ti – Al – Nb alloys,” Mater. Sci. Eng. A, 487, 14 – 19 (2008).CrossRefGoogle Scholar
  9. 9.
    C. Ouchi, H. Fukai, and K. Hasegawa, “Microstructural characteristics and unique properties obtained by solution treating or aging in β-rich α + β titanium alloy,” Mater. Sci. Eng. A, 263, 132 – 136 (1999).CrossRefGoogle Scholar
  10. 10.
    Q. Y. Sun, S. J. Song, R. H. Zhu, and H. C. Gu, “Toughening of titanium alloys by twinning and martensite transformation,” J. Mater. Sci., 37, 2543 – 2547 (2002).CrossRefGoogle Scholar
  11. 11.
    T. Grosdidier, Y. Combress, E. Gautier, and M. J. Philippe, “Effect of microstructure variations on the formation of deformation-induced martensite and associated tensile properties in a β metastable Ti alloy,” Metall. Mater. Trans., 31A, 1095 – 1106 (2000).CrossRefGoogle Scholar
  12. 12.
    L. Zhang, T. Zhou, M. Aindow, et al., “Nucleation of stress-induced martensites in a Ti_Mo-based alloy,” J. Mater. Sci., 40, 2833 – 2836 (2005).CrossRefGoogle Scholar
  13. 13.
    A. Paradkar, S. V. Kamat, A. K. Gogia, and B. P. Kashyap, “Effect of volume fraction of primary _2 on the trigger stress for stress-induced martensitic transformation in two-phase Ti – Al – Nb alloys,” Metall. Mater. Trans. A, 39A, 2086 – 2094 (2008).CrossRefGoogle Scholar
  14. 14.
    A. Paradkar, S. V. Kamat, A. K. Gogia, and B. P. Kashyap, “Trigger stress for stress-induced martensitic transformation during tensile deformation in Ti – Al – Nb alloys: Effect of grain size,” Metall. Mater. Trans. A, 39A, 551 – 558 (2008).CrossRefGoogle Scholar
  15. 15.
    B. Appolaire, L. Héricher, and E. Gautier, “Modeling of phase transformation kinetics in Ti alloys – Isothermal treatments,” Acta Mater., 53, 3001 – 3011 (2005).CrossRefGoogle Scholar
  16. 16.
    H. Ohyama and T. Nishimura, “Effects of alloying elements on deformation mode in Ti – V based titanium alloy system,” ISIJ Int., 31, 927 – 936 (1991).CrossRefGoogle Scholar
  17. 17.
    G. Lütering and J. C. Williams, Titanium, Ch. 7, “Beta Alloys,” 2nd Ed., Springer, Berlin (2007), pp. 283 – 337.Google Scholar
  18. 18.
    M. Gonzalez, J. Pana, J. M. Manero, et al., “Optimization of the Ti – 16.2Hf – 24.8Nb – 1Zr alloy by cold working,” J. Mater. Eng. Perform., 18, 506 – 510 (2009).CrossRefGoogle Scholar
  19. 19.
    F. J. Gil and J. M. Guilemany, “Energetic evaluation for inducing the thermoelastic martensitic transformation by mechanical stress in Cu – Zn – Al single crystals,” Intermetallics, 7, 699 – 704 (1999).CrossRefGoogle Scholar
  20. 20.
    F. X. Gil, J. M. Manero, and J. A. Planell, “Relevant aspects in the clinical applications of NiTi shape memory alloys,” J. Mater. Sci., 7, 403 – 406 (1996).Google Scholar
  21. 21.
    W. Bong, Z. Liu, Y. Gao, et al., “Microstructural evolution during aging of Ti – 10V – 2Fe – 3Al titanium alloy,” J. Univ. Sci. Technol. Beijing, 14, 335 – 340 (2007).CrossRefGoogle Scholar
  22. 22.
    J. Talonen, P. Nenonen, G. Pape, and H. Hanninen, “Effect of stain rate on the strain-induced γ → α′ martensitic transformation and mechanical properties of austenitic stainless steels,” Metall. Mater. Trans. A, 36, 421 – 432 (2005).CrossRefGoogle Scholar
  23. 23.
    A. Paradkar and S. V. Kamat, “The effect of strain rate on trigger stress for stress-induced martensitic transformation and yield strength in Ti – 18Al – 8Nb alloy,” J. Alloys Compd., 496, 178 – 182 (2010).CrossRefGoogle Scholar
  24. 24.
    Y. Liu and H. Yang, “The concern of elasticity in stress-induced martensitic transformation in NiTi,” Mater. Sci. Eng. A, 260, 240 – 245 (1999).CrossRefGoogle Scholar
  25. 25.
    A. Bhattacharjee, S. Bhargava, V. K. Varma, et al., “Effect of β grain size on stress induced martensitic transformation in β solution treated Ti – 10V – 2Fe – 3Al alloy,” Scr. Mater., 53, 195 – 200 (2005).CrossRefGoogle Scholar
  26. 26.
    G. B. Olson and M. Cohen, “Interphase-boundary dislocations and the concept of coherency,” Acta Metall., 27, 1907 – 1918 (1979).CrossRefGoogle Scholar
  27. 27.
    S. Nemat-Nasser, J. Y. Choi, W. G. Guo, J. B. Isaaca, “Very high strain-rate response of a NiTi shape-memory alloy,” Mech. Mater., 37, 287 – 298 (2005).CrossRefGoogle Scholar
  28. 28.
    M. Grujicic, G. B. Olson, and W. S. Owen, “Kinetics of martensitic interface motion,” J. Phys., C4, 173 – 178 (1982).Google Scholar
  29. 29.
    M. Grujicic, G. B. Olson, and W. S. Owen, “Mobility of martensitic interfaces,” Metall. Mater. Trans. A, 15, 1713 – 1722 (1985).CrossRefGoogle Scholar
  30. 30.
    S. N. Nasser and J. Y. Choi, “Strain rate dependence of deformation mechanisms in a Ni – Ti – Cr shape-memory alloy,” Acta Mater., 53, 449 – 454 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Cong Li
    • 1
  • Wei Li
    • 1
  • Jian Chen
    • 1
  • Yan Jie Ren
    • 1
  • Jian Jun He
    • 1
  • Cui Lan Wu
    • 2
  1. 1.Key Laboratory of Efficient and Clean Energy Utilization, College of Hunan Province, School of Energy and Power EngineeringChangsha University of Science and TechnologyChangshaChina
  2. 2.College of Materials Science and EngineeringHunan UniversityChangshaChina

Personalised recommendations