Advertisement

Metal Science and Heat Treatment

, Volume 59, Issue 5–6, pp 321–324 | Cite as

Study of the Structure and Hardness of Alloys of the Sn – Cu – Co System Used as Diamond Abrasive Tool Binders

  • E. G. SokolovEmail author
  • V. P. Artem’ev
  • M. I. Voronova
TECHNICAL INFORMATION

The effect of the chemical composition of alloys of the Sn – Cu – Co system used as a binder for diamond abrasive tools on their structure and hardness is studied. It is shown that in the range of concentrations of the elements studied alloy structure is represented by three phases, i.e., β-Co, a solid solution of tin and cobalt in copper (Cu), and an ε (Cu3Sn) intermetallic phase. The lowest microhardness of the three phases is exhibited by β-Co, as a result of which with an increase in cobalt content alloy macrohardness decreases.

Key words

ternary alloy system intermetallics microhardness macrohardness diamond tool metal binder 

Notes

Work was performed on equipment of the central usage center “Material science and metallurgy” with state financial support of the Russian Ministry of Science and Education (project unique identifier RFMEF159414X0007, agreement No. 14.594.21.0007).

References

  1. 1.
    J. Konstanty, Powder Metallurgy Diamond Tools, Elsevier, Oxford (2005).Google Scholar
  2. 2.
    E. G. Sokolov and A. D. Kozachenko, “RF Patent 2457935, Method for preparing an abrasive tool made from ultrahard materials,” Byull. Izobr. Polezn. Modeli, No. 22 (2012), publ. 08.10.2012.Google Scholar
  3. 3.
    L. G. Rosa, P. M. Amaraland J, C. Fernandes, “Experimental determination of Young’s modulus in PM metal matrices used in diamond impregnated tools for cutting hard materials,” Powder Metall., 51(1), 46 – 52 (2008).Google Scholar
  4. 4.
    Peng Sun, C. Andersson, Xicheng Wei, et al., “Intermetallic compound formation in Sn – Co – Cu, Sn – Ag – Cu and eutectic Sn – Cu solder joints on electroless Ni(P) immersion Au surface finish after reflow soldering,” Mater. Sci. Eng: B, 135(2), 134 – 140 (2006).CrossRefGoogle Scholar
  5. 5.
    T. H. Chuang, C. C. Jain, and H. M. Wu, “Intermetallic reactions in Sn – 0.4Co – 0.7Cu solder BGA packages with an ENIG surface finish,” J. Electr. Mater., 37(11), 1734 – 1741 (2008).CrossRefGoogle Scholar
  6. 6.
    C. Andersson, Peng Sun, and J. Liu, “Tensile properties and microstructural characterization of Sn – 0.7Cu – 0.4Co bulk solder alloy for electronics applications,” J. Alloys Compounds, 457(1 – 2), 97 – 105 (2008).CrossRefGoogle Scholar
  7. 7.
    Yu-Kai Chen, Chia-Ming Hsu, Sinn-Wen Chen, et al., “Phase equilibria of Sn – Co – Cu ternary system,” Metall. Mater. Trans. A, 43(10), 3586–3595 (2012).CrossRefGoogle Scholar
  8. 8.
    N. P. Lyakishev (ed.), Binary Metal System Diagram: Handbook, Vol. 2 [in Russian], Mashinostroenie, Moscow (1997).Google Scholar
  9. 9.
    Yu. V. Naidich, G. A. Kolesnichenko, I. A. Lavrinenko, and Ya F. Motsak, Soldering and Metallization of Ultrahard Tool Materials [in Russian], Naukova Dumka, Kiev (1977).Google Scholar
  10. 10.
    S. D. Shlyapin, Ultrasolidus Sintering of Powder High-Speed Steels [in Russian], GINFO MGIU, Moscow (2003).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • E. G. Sokolov
    • 1
    Email author
  • V. P. Artem’ev
    • 1
  • M. I. Voronova
    • 2
  1. 1.Kuban State Technological UniversityKrasnodarRussia
  2. 2.National Research Technological University “MISiS”MoscowRussia

Personalised recommendations