Metal Science and Heat Treatment

, Volume 58, Issue 9–10, pp 587–593 | Cite as

Analysis of Magnetization Curves and Magnetocrystalline Anisotropy of Uniaxial Ferromagnets

  • M. B. LyakhovaEmail author
  • O. V. Zhdanova

Theoretical analysis of the processes of magnetization of uniaxial ferromagnetic materials is performed within the Neel theory of magnetic phases. Relations are obtained for the constants of magnetic crystal anisotropy K 1, K 2, the form factor N, and the saturation magnetization I s , at which the magnetization curves exhibit jumps (FOMP). Formulas for computing the saturation fields H s and the jump fields H FOMP are derived for crystals with different types of magnetocrystalline anisotropy MCA. It is shown that the Sucksmith–Thompson method is applicable for computing the first too MCAconstants of uniaxial ferromagnets with any type of MCA. Constants K 1 and K 2 are computed with allowance for the form factor of the specimen. Model magnetization curves are plotted for uniaxial ferromagnets with different types of MCA along and perpendicularly to crystallographic axis c. The analytical results match the model curves well.

Key words

magnetization curve magnetocrystalline anisotropy constants of magnetocrystalline anisotropy Sucksmith–Thompson method 


  1. 1.
    W. Sucksmith, F. R. S. Thompson, and J. E. Thompson, “The magnetic anisotropy of cobalt,” Proc. Royal Soc. A, 225, 362 – 375 (1954).CrossRefGoogle Scholar
  2. 2.
    G. Asti, “First-order magnetic processes,” Ferromagnetic Mater., 5, 397 – 464 (1990).CrossRefGoogle Scholar
  3. 3.
    L. Neel, “Les lois de l’aimantation et de subdivision en domains elementaires d’un monocristal de fer (I),” J. de Phys. Radium, 5, 241 – 251 (1944).CrossRefGoogle Scholar
  4. 4.
    K. P. Skakov, “Allowance for the micromagnetic state of a specimen when interpreting data of magnetic measurements,” Izv. Ross. Akad. Nauk, Ser. Fiz., 71(11), 1563 – 1564 (2007).Google Scholar
  5. 5.
    K. P. Skokov, Yu. G. Pastushenkov, S. V. Taskaev, and V. V. Rodionova, “Micromagnetic analysis of spin-reorientation transitions. The role of magnetic domain structure,” Physica B, 478, 12 – 16 (2015).CrossRefGoogle Scholar
  6. 6.
    L. B. Lyakhova, S. S. Smirnov, and K. P. Skokov, Software for Simulating Magnetization Curves of Ferromagnetic Crystals, Certif. State Reg. Computer Software No. 2013618687 [in Russian], FGBOU VPO Tver State University (RU), Appl. No. 2013616250, July 18, 2013; Reg. Sept. 16, 2013.Google Scholar
  7. 7.
    A. I. Mitsek, N. P. Kolmakova, and D. I. Sirota, “Magnetic phase diagrams and domain structures of ferromagnetic crystals with high-order symmetry axis,” Fiz. Met. Metalloved., 38(1), 35 – 47 (1974).Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Tver State UniversityTverRussia

Personalised recommendations