Metal Science and Heat Treatment

, Volume 58, Issue 1–2, pp 12–18 | Cite as

Functional Metallic Materials with Fragmented Structure and Developed Surface

  • A. A. Vikarchuk
  • N. N. Gryzunova
  • M. V. Dorogov
  • A. N. Priezzheva
  • A. E. Romanov

The physicochemical foundations of fabrication of functional materials with faulted structure and developed surface are considered for copper as an example. Methods for increasing the specific surface of icosahedral particles and their layers are suggested. An original method for creating developed surface for metallic particles, crystals, layers, coatings and massive materials from them is suggested and proved experimentally.

Key words

metal particles coatings electrodeposition disclinations fragmentation developed surface 


The work has been performed with support of a grant of the Ministry of Education and Science of the Russian Federation (Order No. 220) at the Tolyatti State University (Agreement No. 14.B25.31.0011).


  1. 1.
    S. Ogawa and S. Ino, “Formation of multiply-twinned particles on alkali halide crystals by vacuum evaporation and their structures,” J. Cryst. Growth, 13_14, 48 – 56 (1972).Google Scholar
  2. 2.
    A. A. Vikarchuk and A. P. Volenko, “Pentagonal copper crystals, variety of forms of their growth, and features of internal structure,” Fiz. Tverd. Tela, 47(2), 339 – 334 (2005).Google Scholar
  3. 3.
    Yu. N. Gornostaev, I. N. Kar’kin, M. I. Katsnelson, and A. V Trefilov, “Evolution of the atomic structure of metallic clusters under heating and cooling. Computer simulation of metals with FCC lattice,” Fiz. Met. Metalloved., 96(2), 19 – 29 (2003).Google Scholar
  4. 4.
    A. Howie and L. D. Marks, “Elastic strains and the energy balance for multiply twinned particles,” Philos. Mag. A, 49(1), 95 – 109 (1984).CrossRefGoogle Scholar
  5. 5.
    J. Smit, F. Ogburn, and C. J. Bechtold, “Multiple twin structures in electrodeposited silver dendrites,” J. Electrochem. Soc., 115(4), 371 – 374 (1968).CrossRefGoogle Scholar
  6. 6.
    A. A. Vikarchuk and I. S. Yasnikov, Structure Formation in Nanoparticles and Microparticles with Pentagonal Symmetry Forming under Electrocrystallization of Metals [in Russian], TGU, Tolyatti (2006), 206 p.Google Scholar
  7. 7.
    R. L. Schwoebel, “A diffusion model for filamentary crystal growth,” J. Appl. Phys., 38(4), 1759 – 1765 (1967).CrossRefGoogle Scholar
  8. 8.
    V. G. Gryaznov, J. Heidenrich, A. M. Karpelov, et al., “Pentagonal symmetry and disclinations in small particles,” Cryst. Res. Technol., 34(9), 1091 – 1119 (1999).CrossRefGoogle Scholar
  9. 9.
    A. A. Vikarchuk, A. P. Volenko, Yu. D. Gamburg, and S. A. Bondarenko, “About the disclination nature of pentagonal crystals forming under electrocrystallization of copper,” Elektrokhimiya, 40(2), 207 – 214 (2004).Google Scholar
  10. 10.
    L. D. Marks and D. J. Smith, “HREM and STEM of defects in multiply-twinned particles,” J. Microsc. (Gr. Brit.), 130, 249 – 261 (1083).Google Scholar
  11. 11.
    I. S. Yasnikov and A. A. Vikarchuk, “Mechanisms of relaxation of elastic stresses in the process of growth of nanoparticles and microcrystals with disclination defects in electrocrystallization of FCC metals,” Met. Sci. Heat Treat., 49(3 – 4), 97 – 104 (2007).Google Scholar
  12. 12.
    A. A. Vikarchuk, M. V. Dorogov, A. V. Volkov, and N. N. Gryzunova, “Disclination defects in substrates as the sites of whisker growth,” Russian Metallurgy (Metally ), No. 4, 290 – 295 (2011).Google Scholar
  13. 13.
    A. N. Abramova, M. V. Dorogov, S. Vlasov, et al., “Nanowhisker of copper oxide: fabrication technique, structural features and mechanical properties,” Mater. Phys. Mechan., 19(1), 88 – 95 (2014).Google Scholar
  14. 14.
    N. N. Gryzunova, A. A. Vikarchuk, V. V. Bekin, and A. E. Romanov, “Creation of developed surface of copper electrolytic coatings by the method of mechanical activation of cathode and subsequent heat treatment,” Izv. Ross. Akad. Nauk, Ser. Fiz., 79(9), 1239 – 1243 (2015).Google Scholar
  15. 15.
    V. V. Rybin, High Plastic Deformations and Fracture of Metals [in Russian], Metallurgiya, Moscow (1986), 220 p.Google Scholar
  16. 16.
    A. A. Vikarchuk and N. N. Gryzunova, “Spiral-disclination mechanism of formation of filamentary pentagonal crystals in the process of electrocrystallization,” Materialovedenie, No. 6, 7 – 13 (2008).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. A. Vikarchuk
    • 1
  • N. N. Gryzunova
    • 1
  • M. V. Dorogov
    • 1
  • A. N. Priezzheva
    • 1
  • A. E. Romanov
    • 1
    • 2
    • 3
  1. 1.Tolyatti State UniversityTolyattiRussia
  2. 2.A. F. Ioffe Physicotechnical Institute of the Russian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg National Research University for Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations