Metal Science and Heat Treatment

, Volume 57, Issue 7–8, pp 515–518 | Cite as

Rapid Evaluation of the Cooling Capacity of Quenching Media

  • M. V. MaisuradzeEmail author
  • M. A. Ryzhkov
  • Yu. V. Yudin

The cooling capacity of commercial quenching media is studied with the use of a hot probe from an austenitic steel. The method developed is used to determine the dependence of the heat transfer factor of the medium on the temperature of the cooled surface with allowance for the thermotechnical solidity of the probe. The method is recommended for estimating the quality of quenching media under industrial conditions and for determining boundary conditions for numerical simulation of heat treatment processes.

Key words

cooling capacity heat transfer factor quenching media industrial oil air solidity factor hot probe 


The work has been performed within State Target of the Ministry of Education and Science of the RF No. 11.1465.2014/K with the aid of the program for support of the leading universities of the RF aimed at raising their competitiveness No. 211 of the Government of the RF No. 02.A03.21.0006.


  1. 1.
    V. A. Khotinov, S. V. Oshchukov, and V. M. Farber, “Structure and mechanical properties of medium-carbon steels after heating in the intercritical temperature range,” Metalloved. Term. Obrab. Met., No. 11, 31 – 35 (2011).Google Scholar
  2. 2.
    D. O. Panov, Yu. N. Simonov, P. A. Leont’ev, et al., “A study of phase and structural transformations of quenched low-carbon steel under repeated intense heat impact,” Metalloved. Term. Obrab. Met., No. 11, 28 – 32 (2012).Google Scholar
  3. 3.
    A. A. Popov. I. V. Narygina, and M. A. Popova, “Effect of the method of heat treatment on formation of structure and properties of refractory titanium alloys,” Metalloved. Term. Obrab. Met., No. 12, 20 – 24 (2012).Google Scholar
  4. 4.
    A. G. Illarionov, A. A. Popov, M. O. Leder, et al., “Formation of structure, phase composition and properties in a binary titanium alloy upon variation of the temperature and rate parameters of heat treatment,” Metalloved. Term. Obrab. Met., No. 9, 43 – 47 (2014).Google Scholar
  5. 5.
    Zh. Zhang, W. Wang, H. Fu, and J. Xie, “Effect of quench cooling rate on residual stress, microstructure and mechanical property of an Fe – 6.5Si alloy,” Mater. Sci. Eng. A, 530, 519 – 524 (2011).CrossRefGoogle Scholar
  6. 6.
    A. D. da Silva, T. A. Pedrosa, J. L. Gonzales-Mendez, X. Jiang, P. R. Celtin, and T. Altan, “Distortion in quenching an AISI 4140 C-ring — predictions and experiments,” Mater. Design, 42, 55 – 61 (2012).CrossRefGoogle Scholar
  7. 7.
    ASM Handbook, Vol. 4: Heat Treating, ASM Int., USA (1991), 1012 p.Google Scholar
  8. 8.
    B. Liscic, H. M. Tensi, L. C. F. Canale, and G. E. Totten (eds.), Quenching Theory and Technology, CRS Press, USA (2010), 691 p.Google Scholar
  9. 9.
    L. V. Petrash, Quenching Media [in Russian], Mashgiz, Moscow– Leningrad (1959), 112 p.Google Scholar
  10. 10.
    G. E. Totten, G. M. Webster, H. M. Tensi, and B. Liscic, “Standards for cooling curve analysis of quenchants,” Heat Treat. Met., No. 4, 92 – 94 (1997).Google Scholar
  11. 11.
    ASTM D 6200-01. Standard Test Method for Determination of Cooling Characteristics of Quench Oils by Cooling Curve Analysis, ASTM Int. (2001), 6 p.Google Scholar
  12. 12.
    V. Lyuty, Quenching Media [in Russian], Metallurgiya, Chelyabinsk (1990), 192 p.Google Scholar
  13. 13.
    D. V. Budrin and V. M. Kondrat’ev, “Water-air cooling in quenching,” Metalloved. Term. Obrab. Met., No. 6, 22 – 15 (1965).Google Scholar
  14. 14.
    M. V. Maisuradze and Yu. V. Yudin, “Characteristics of drop water atomizer of centrifugal-jet type used for quenching of steels,” Izv. Vysh. Uchebn. Zaved., Chern. Met., No. 8, 45 – 48 (2008).Google Scholar
  15. 15.
    H. S. Hasan, M. J. Peet, J. M. Jalil, and H. K. D. H. Bhadeshia, “Heat transfer coefficients during quenching of steels,” Heat Mass Trans., 47, 315 – 321 (2011).CrossRefGoogle Scholar
  16. 16.
    S. N. Lingamanaik and B. K. Chen, “Prediction of residual stresses in low carbon bainitic-martensitic railway wheels using heat transfer coefficients derived from quenching experiments,” Comp. Mater. Sci., 77, 153 – 160 (2013).CrossRefGoogle Scholar
  17. 17.
    L. Huiping, Zh. Guoqun, N. Shanting, and L. Yiguo, “Inverse heat conduction analysis of quenching process using finite-element and optimization method,” Finite Elem. Anal. Design, 42, 1087 – 1096 (2006).CrossRefGoogle Scholar
  18. 18.
    A. Buczek and T. Teleko, “Investigation of heat transfer coefficient during quenching in various cooling agents,” Int. J. Heat Fluid Flow, 44, 358 – 364 (2013).CrossRefGoogle Scholar
  19. 19.
    A. Sugianto, M. Narazaki, M. Kogawara, and A. Shirayori, “A comparative study on determination method of heat transfer coefficient using inverse heat transfer and iterative modification,” J. Mater. Proc. Technol., 209, 4627 – 4632 (2009).CrossRefGoogle Scholar
  20. 20.
    M. V. Maisuradze, Yu. V. Yudin, and M. A. Ryzhov, “A method for simulating the cooling process under heat treatment of simple-shape steel articles,” Stal’, No. 10, 90 – 94 (2013).Google Scholar
  21. 21.
    A. Yu. Ampilogov, Yu. A. Bykov, and V. I. Tret’yakov, “New method for determining the cooling capacity of quenchants,” Zagotov. Proizvod. Mashinostr., No. 6, 35 – 37 (2006).Google Scholar
  22. 22.
    J. R.Welty, C. E.Wicks, R. E.Wilson, and G. L. Rorrer, Fundamentals of Momentum. Heat and Mass Transfer, John Wiley & Sons, USA, NY (2008), 711 p.Google Scholar
  23. 23.
    Yu. G. Eismondt, Thermal Equipment and Its Design, Vol. 2. Cooling and Auxiliary Thermal Facilities [in Russian], YuUrGU, Chelyabinsk (1997), 159 p.Google Scholar
  24. 24.
    M. V. Maisuradze, M. A. Ryzhkov, Yu. V. Yudin, and A. A. Ershov, “Process of heat treatment of parts with variable cross section from high-strength machine building steel,” Metallurg, No. 8, 101 – 104 (2014).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. V. Maisuradze
    • 1
    Email author
  • M. A. Ryzhkov
    • 1
  • Yu. V. Yudin
    • 1
  1. 1.Ural Federal University after the First President of Russia B. N. EltsynEkaterinburgRussia

Personalised recommendations