Metal Science and Heat Treatment

, Volume 57, Issue 5–6, pp 329–333 | Cite as

Diagnosis of the Fracture and Fracture Energy of High-Ductility Steels in Instrumented Impact-Bending Tests

  • V. M. Farber
  • V. A. Khotinov
  • A. N. Morozova
  • N. V. Lezhnin
  • T. Martin
Article

Fractures and their profiles are diagnosed by macro- and micro-fractographic analysis after impact bending tests of Charpy specimens of a high-ductility steel of strength class X80. The results of the analysis of fracture surfaces and fracture diagrams are used to determine the unit amount of energy expended on ductile fracture in various zones in terms of the average length of the ridges (bridges) in the microstructure.

Key words

X80 steels ductile fracture fracture diagram energy density of fracture fracture zones dimpled ductile texture 

References

  1. 1.
    A. B. Arabei, I. Yu. Pyshmintsev, V. M. Farber, et al., “Features of the fracture of pipe steels in strength class X80 (K65),” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 3, 12 – 20 (2012).Google Scholar
  2. 2.
    A. B. Arabei, V. M. Farber, I. Yu. Pyshmintsev, et al., “Microstructure and dispersed phases in the high-strength steels of large-diameter gas-line pipe,” Nauka Tekh. Gazovoi Prom-sti, No. 4, 86 – 91 (2011).Google Scholar
  3. 3.
    M. V. Maisuradze, Yu. G. Eismondt, and Yu. V. Yudin, “Determination of the optimum design parameters of drip-type evaporative coolers,” Metalloved. Term. Obrab. Met., No. 10, 54 – 59 (2010Google Scholar
  4. 4.
    V. A. Khotinov, V. M. Farber, A. N. Morozova, and N. V. Lezhnin, “Use of oscillograms of the impact bending of Charpy specimens to evaluate the energy content of the fracture of highstrength steels,” Proizvod. Prokata, No. 11, 28 – 35 (2013).Google Scholar
  5. 5.
    L. R. Botvina, Fracture: Kinetics, Mechanisms, General Laws [in Russian], Nauka, Moscow (2008).Google Scholar
  6. 6.
    Ya. B. Fridman, Mechanical Properties of Metals. Vol. 2. Mechanical Tests. Structural Strength [in Russian], Mashinostroenie, Moscow (1974).Google Scholar
  7. 7.
    A. A. Gudkov, Fracture Toughness of Steel [in Russian], Metallurgiya, Moscow (1989).Google Scholar
  8. 8.
    ASTM E2298. Standard Test Method for Instrumented Impact Testing of Metallic Materials (2013).Google Scholar
  9. 9.
    I. Yu. Pyshmintsev, A. B. Arabei, V. M. Farber, et al, “Laboratory criteria of the fracture toughness of high-strength steels for gas-line pipe,” Fiz. Met. Metalloved., 113(4), 411 – 417 (2012).CrossRefGoogle Scholar
  10. 10.
    V. M. Farber, A. B. Arabei, I. Yu. Pyshmintsev, and V. A. Khotinov, “Fractographic criteria of the fracture toughness of pipes in strength class X80,” Proizvod. Prokata, No. 3, 7 – 11 (2011).Google Scholar
  11. 11.
    A. A. Saltykov, Stereographic Metallography [in Russian], Metallurgiya, Moscow (1976).Google Scholar
  12. 12.
    V. M. Farber, I. Yu. Pyshmintsev, A. B. Arabei, et al., “Model of the formation and growth of fissures,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 5, 34 – 39 (2012).Google Scholar
  13. 13.
    R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, Inc., nonlinear (1996).Google Scholar
  14. 14.
    T. E. Ekobori, Physics and Mechanics of Fracture and the Strength of Solids [Russian translation], Metallurgiya, Moscow (1971).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • V. M. Farber
    • 1
  • V. A. Khotinov
    • 1
  • A. N. Morozova
    • 1
  • N. V. Lezhnin
    • 2
  • T. Martin
    • 3
  1. 1.Ural Federal UniversityEkaterinburgRussia
  2. 2.Institute of Metal PhysicsUral Branch of the Russian Academy of SciencesEkaterinburgRussia
  3. 3.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations