Metal Science and Heat Treatment

, Volume 53, Issue 1–2, pp 14–23 | Cite as

Effect of composition and heat treatment on the structure and properties of condensed composites of the Cu – W system

  • V. V. BukhanovskiiEmail author
  • R. V. Minakova
  • I. N. Grechanyuk
  • I. Mamuziæ
  • N. P. Rudnitskii
Composite Materials

Changes in the structure, electrical conduction, mechanical characteristics, and special features of fracture of a copper-tungsten composite obtained by the method of electron-beam evaporation-condensation are studied as a function of the composition of the material and its heat treatment. New morphological features of the condensed composite and the related changes in the properties are determined. Relation between the content of tungsten (in a range of 5 – 60 wt.%) in the condensate, the state of the material, its structure, electrical conduction, and mechanical properties is established. The structure and composition of condensates optimum from the standpoint of their application as materials for electric contacts are determined.

Key words

condensed copper tungsten composite composition structure properties annealing elevated temperature 


  1. 1.
    V. V. Skorokhod, Powder Materials Based on Refractory Metals and Compounds [in Russian], Tekhnika, Kiev (1982), 167 p.Google Scholar
  2. 2.
    V. V. Rakovskii, A. F. Silaev, V. I. Khodkin, et al., The Powder Metallurgy of High-Temperature Alloys and Refractory Metals [in Russian], Metallurgiya, Moscow (1974), 184 p.Google Scholar
  3. 3.
    V. V. Rakovskii and V. V. Saklinskii, Powder Metallurgy in Machine Building [in Russian], Mashgiz, Moscow (1963), 103 p.Google Scholar
  4. 4.
    D. M. Karpinos (ed.), Composite Materials, Reference Book [in Russian], Naukova Dumka, Kiev (1985), 592 p.Google Scholar
  5. 5.
    L. N. Nerus, A. O. Verkhoturov, B. A. Marek, et al., “Electroerosion strength of tungsten – copper and molybdenum – copper pseudoalloys,” Poroshk. Metall., No. 5, 98 – 101 (1977).Google Scholar
  6. 6.
    N. V. Skripnik, Strength and Regular Features of Strain and Fracture of Tungsten-Copper Pseudoalloys Obtained by Impregnation. Preprint [in Russian], Inst. Probl. Prochn. Akad. Nauk USSR, Kiev (1986), 39 p.Google Scholar
  7. 7.
    G. G. Gnesin (ed.), Sintered Materials for Electrical Engineering and Electronics, Reference Book [in Russian], Metallurgiya, Moscow (1981), 343 p.Google Scholar
  8. 8.
    I. D. Jancovi, J. Fiscina, C. J. R. González-Oliver, et al., “Electrical and elastic properties of Cu – W graded material produced by vibro compaction,” J. Mater. Sci., 43(20), 6777 – 6783 (2008).CrossRefGoogle Scholar
  9. 9.
    Y. Li, Z. Zheng, C. Lei, et al., “Properties of W – Cu composite powder produced by a thermo-mechanical method,” Int. J. Refractory Metals Hard Mater., 47(5), 259 – 264 (2003).CrossRefGoogle Scholar
  10. 10.
    T. Venugopal, K. P. Rao, and K. P. Murty, “Synthesis of Cu – W nanocomposite by high-energy ball milling,” J. Nanosci. Nanotechnol., No. 7, 2376 – 2381 (2007).Google Scholar
  11. 11.
    H.-K. Kang and S. B. Kang, “Plasma-sprayed Cu – W composite,” J. Korean Inst. Metals and Mater., 42(1), 58 – 63 (2004).Google Scholar
  12. 12.
    Koichi Hori, Masao Ohtsuka, and Masanori Hara, “Arc erosion characteristics of Cu – W contact at load current range in SF6 gas,” Electr. Eng. Jpn., 118(1), 41 – 51 (1997).CrossRefGoogle Scholar
  13. 13.
    V. I. Rakhovskii, G. V. Levchenko, and O. K. Teodorovich, Break Contacts of Electric Devices [in Russian], Énergiya, Moscow – Leningrad (1966), 293 p.Google Scholar
  14. 14.
    B. A. Movchan and I. S. Malashenko, Refractory Coatings Deposited in Vacuum [in Russian], Naukova Dumka, Kiev (1983), 230 p.Google Scholar
  15. 15.
    N. I. Grechanyuk, I. Mamuziæ, and P. Shpak, “Modern electron-beam technologies of melting and evaporation of materials in vacuum used by Gekont Company, Ukraine,” Metalurgija, 41(2), 125 – 128 (2002).Google Scholar
  16. 16.
    N. I. Grechanyuk, I. Mamuziæ, and. V. Bukhanovsky, “Production technology and physical, mechanical and performance characteristics of Cu – Zr – Y – Mo finely-dispersed microlayer composite materials,” Metalurgija, 46(2), 93 – 96 (2007).Google Scholar
  17. 17.
    N. I. Grechanyuk, V. A. Osokin, I. N. Grechanyuk, et al., “Copper-and molybdenum-base composite materials for electric contacts condensed from vapor phase. Structure, Properties, Technology. State-of-the-art and prospects of the use of electron-beam high-speed evaporation-condensation for making materials for electric contacts. Report 1,” Sovrem. Életrometallurg., No. 2, 28 – 35 (2005).Google Scholar
  18. 18.
    N. I. Grechanyuk, V. A. Osokin, I. N. Grechanyuk, et al., “Fundamentals of the electron-beam technology for making materials for electric contacts. Their structure and properties. Report 2,” Sovrem. Életrometallurg.,No. 2,9–19 (2006).Google Scholar
  19. 19.
    N. I. Grechanyuk, V. A. Osokin, I. N. Grechanyuk, et al., “Process of production and service characteristics of microlayer composite materials for new-generation electric contacts,” Vopr. Materialoved., 1(37), 49 – 55 (2004).Google Scholar
  20. 20.
    N. I. Grechanyuk, I. Mamuziæ, and R. V. Minakova, “Peculiarities of the structure, ITS deformation and destruction of condensed Cu – Mo – Zr – Y composite material of commercial purity,” Metalurgija, 47(2), 99 – 102 (2008).Google Scholar
  21. 21.
    V. V. Bukhanovskii, I. Mamuziæ, and N. P. Rudnitsky, “The effect of temperature on mechanical characteristics of copper-carbonic composite,” Kovove Materialy (Metallic Materials), 46(1), 33 – 37 (2008).Google Scholar
  22. 22.
    V. V. Bukhanovskii, N. P. Rudnitsky, I. Mamuziæ et al., “Effect of composition and process factors on the structure, mechanical properties, and fracture behavior of a composite material of the copper-chromium system,” Metalloved. Term. Obrab. Met., No. 8, 26 – 31 (2009).Google Scholar
  23. 23.
    V. V. Klyuev (ed.), Testing Facilities, Reference Book [in Russian], Mashinostroenie, Moscow (1982), Vol. 2, 570 p.Google Scholar
  24. 24.
    M. M. Aleksyuk, V. A. Borisenko, and V. P. Krashchenko, Mechanical Tests at High Temperatures [in Russian], Naukova Dumka, Kiev (1980), 208 p.Google Scholar
  25. 25.
    V. A. Borisenko, Hardness and Strength of Refractory Materials at High Temperatures [in Russian], Naukova Dumka, Kiev (1984), 212 p.Google Scholar
  26. 26.
    V. O. Borisenko and O. B. Oksamitna, DSTU 2434–94. A Method for Determining High-Temperature Hardness by Indentation of 1995 Pyramidal and Bicylindrical Indenter, 01.01.95 [in Ukrainian].Google Scholar
  27. 27.
    A. V. Bobylev, Mechanical and Technological Properties of Metals, Reference Book [in Russian], Metallurgiya, Moscow (1980), 296 p.Google Scholar
  28. 28.
    V. A. Borisenko, V. V. Bukhanovskii, N. I. Grechanyuk, et al., “Temperature dependences of static mechanical properties of microlayer composite material MDK-3,” Probl. Prochn., No. 4, 113 – 120 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • V. V. Bukhanovskii
    • 1
    Email author
  • R. V. Minakova
    • 2
  • I. N. Grechanyuk
    • 3
  • I. Mamuziæ
    • 4
  • N. P. Rudnitskii
    • 2
  1. 1.G. S. Pisarenko Institute for Strength Problems of the National Academy of Sciences of UkraineKievUkraine
  2. 2.I. N. Frantsevich Institute for Problems of Materials Science of the National Academy of Sciences of UkraineKievUkraine
  3. 3.“Eltekhmash” Research and Production Enterprise (NPP “Gekont”)VinnitsaUkraine
  4. 4.Metallurgical Faculty of the Zagreb UniversityZagrebCroatia

Personalised recommendations