Advertisement

Sharp Spectral Inequalities for Fourth Order Differential Operators on Semi-Axis

  • Muhammad Danish Zia
  • Muhammad UsmanEmail author
Article
  • 25 Downloads

Abstract

In this paper we consider fourth order differential operators on semi-axis with Robin type boundary condition at zero. Using the commutation method we obtain sharp Lieb-Thirring inequalities for the negative eigenvalues of double multiplicity.

Keywords

Fourth order operators Lieb-Thirring inequalities Commutation method 

Mathematics Subject Classification (2010)

Primary: 35P15 Secondary: 81Q10 

Notes

References

  1. 1.
    Benguria, R., Loss, M.: A simple proof of a theorem by Laptev and Weidl. Math. Res. Lett. 7(2-3), 195–203 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Exner, P., Laptev, A., Usman, M.: On some sharp spectral inequalities for Schrödinger operators on semiaxis. Commun. Math. Phys. 326, 531–541 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Förster, C., Östensson, J.: Lieb-thirring inequalities for higher order differential operators. Math. Nachr. 281, 199–213 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gregorio, F., Mungolo, D.: Bi-Laplacians on graphs and networks, arXiv:1712.07370v2 (2018)
  5. 5.
    Hoppe, J., Laptev, A., Östensson, J.: Solitons and the removal of eigenvalues for fourth-order differential operators. Int. Math. Res. Not. 2006, 1–14 (2006)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Ibrogimov, O., Krejčiřík, D., Laptev, A.: Sharp bounds for eigenvalues of biharmonic operators with complex potentials in low dimensions, arXiv:1903.01810 (2019)
  7. 7.
    Kiik, J.-C., Kurasov, P., Usman, M.: On vertex conditions for elastic systems. Phys. Lett. A. 379(34-35), 1871–1876 (2015). MR 3349572ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Lieb, E.H., Thirring, W.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, Studies in Math. Phys. Essays in Honor of Valentine Bargmann, Princeton (1976)Google Scholar
  9. 9.
    Mickelin, O.: Lieb-thirring inequalities for generalized magnetic fields. Bull. Math. Sci. 6, 1–14 (2016)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Netrusov, Y., Weidl, T.: On Lieb-Thirring inequalities for higher order operators with critical and subcritical powers. Commun. Math. Phys. 182, 355–370 (1996)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Schimmer, L.: Spectral inequalities for jacobi operators and related sharp Lieb-Thirring inequalities on the continuum. Commun. Math. Phys. 334, 473–505 (2015)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Schmincke, U.-W.: On Schrödinger’s factorization method for Sturm-Liouville operators. Proc. Roy. Soc. Edinburgh Sect. A 80, 67–84 (1978)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Yafaev, D.R.: Spectral and scattering theory of fourth order differential operators. Am. Math. Soc. Transl., Ser. 2, vol. 225, Amer. Math. Soc., Providence, RI, 2008Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MathematicsLahore University of Management SciencesLahorePakistan

Personalised recommendations