Advertisement

An Algebraic Approach to FQHE Variational Wave Functions

  • Shashikant Mulay
  • John J. Quinn
  • Mark ShattuckEmail author
Article
  • 11 Downloads

Abstract

Consider a system of N electrons projected onto the lowest Landau level with filling factor of the form \(\frac {n}{2pn\pm 1}<\frac {1}{2}\) and N a multiple of n. We show that there always exists a two-dimensional symmetric correlation function (arising as a nonzero symmetrization) for such systems and hence one can always write a variational wave function. This extends an earlier observation of Laughlin for an incompressible quantum liquid (IQL) state with filling factor equal to the reciprocal of an odd integer \(\geqslant \) 3. To do so, we construct a family of d-regular multi-graphs on N vertices for all N whose graph-monomials have nonzero linear symmetrization and obtain, as special cases, the aforementioned nonzero correlations for the IQL state. The linear symmetrization that is obtained is in fact an example of what is called a binary invariant of type (N,d). Thus, in addition to supplying new variational wave functions for systems of interacting Fermions, our construction is of potential interest from both the graph and invariant theoretic viewpoints.

Keywords

Trial wave function Symmetric correlation function Relative invariant d-regular multi-graph 

Mathematics Subject Classification (2010)

81V70 13A50 

Notes

References

  1. 1.
    Alexandersson, P., Shapiro, B.: Discriminants, symmetrized graph monomials, and sums of squares. Experiment. Math. 21, 353–361 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brouwer, A.E., Draisma, J., Popoviciu, M.: The degrees of a system of parameters of the ring of invariants of a binary form. arXiv:1404.5722
  3. 3.
    Dixmier, J.: Quelques résultats et conjectures concernant les séries de Poincaré des invariants des formes binaires. In: d’algèbre, S., Dubreil, P., Malliavin, M.-P. (eds.) 36ème année (Paris, 1983-1984). Lecture Notes in Math., 1146, pp 127–160. Springer, Berlin (1985)Google Scholar
  4. 4.
    Elliot, E.B.: An Introduction to the Algebra of Quantics, 2nd edn. Chelsea Publishing Company, New York. (1913), reprint (1964)Google Scholar
  5. 5.
    Grace, J.H., Young, A.: The Algebra of Invariants. Chelsea Publishing Company, New York (1964). (1903), reprintzbMATHGoogle Scholar
  6. 6.
    Greenhill, C., McKay, B.D.: Asymptotic enumeration of sparse multigraphs with given degrees. SIAM J. Discret. Math. 27, 2064–2089 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hansson, T.H., Hermanns, M., Simon, S.H., Viefers, S.F.: Quantum Hall physics: Hierarchies and conformal field theory techniques. Rev. Mod. Phys. 89, 025005 (2017)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Jain, J.K.: Composite-Fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199–202 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    Jain, J.K.: Theory of the fractional quantum Hall effect. Phys. Rev. B 41, 7653–7665 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    Kung, J.P.S., Rota, G. -C.: The invariant theory of binary forms. Bull. Amer. Math. Soc. 10, 27–85 (1984)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Laughlin, R.B.: Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    Mulay, S.B., Quinn, J.J., Shattuck, M.A.: Correlation diagrams: an intuitive approach to correlations in quantum Hall systems. J. Phys.: Conf. Ser. 702, 1–10 (2016)Google Scholar
  13. 13.
    Quinn, J.J., Wójs, A., Yi, K. -S., Simion, G.: The hierarchy of incompressible fractional quantum Hall states. Phys. Rep. 481(3–4), 29–81 (2009)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Zariski, O., Samuel, P.: Commutative Algebra, vol. I and II. Springer, New York (1976). Graduate Texts in MathematicszbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Shashikant Mulay
    • 1
  • John J. Quinn
    • 2
  • Mark Shattuck
    • 3
    Email author
  1. 1.Department of MathematicsUniversity of TennesseeKnoxvilleUSA
  2. 2.Department of PhysicsUniversity of TennesseeKnoxvilleUSA
  3. 3.Institute for Computational Science & Faculty of Mathematics and StatisticsTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations