Advertisement

Inequalities in the Setting of Clifford Analysis

  • Jamel El Kamel
  • Rim Jday
Article
  • 26 Downloads

Abstract

In this paper, we prove the Riemann-Lebesgue lemma for the Clifford-Fourier transform. We give an alternative proof of Heisenberg’s inequality. Furthermore, we provide a version of Young inequalities in the framework of Clifford analysis.

Keywords

Clifford analysis Clifford-Fourier transform Heisenberg’s inequality Young inequalities 

Mathematics Subject Classification (2010)

Primary 42B10 Secondary 30G35 Tertiary 44A35 

References

  1. 1.
    Brackx, F., Hitzer, E., Sangwine, S.J.: History of quaternion and Clifford-Fourier transforms. In: Hitzer, E., Sangwine, S.J. (eds.) Quaternion and Clifford Fourier Transforms and Wavelets, Trends in Mathematics (TIM), vol. 27, pp xi–xxvii. Birkhäuser, Basel (2013)Google Scholar
  2. 2.
    Batard, T., Berthier, M., Saint-Jean, C.: Clifford Fourier transform for color image processing. In: Bayro-Corrochano, E., Scheuermann, G. (eds.) Geometric Algebra Computing: In Engineering and Computer Science, pp 135–161. Springer, London (2010)Google Scholar
  3. 3.
    Brackx, F., De Schepper, N., Sommen, F.: The Clifford-Fourier transform. J. Fourier Anal. Appl. 11, 669–681 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bujack, R., De Bie, H., De Schepper, N., Scheuermann, G.: Convolution products for hypercomplex Fourier transforms. J. Math. Imaging Vis. 48, 606–624 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bujack, R., Scheuermann, G., Hitzer, E.: A general geometric fourier transform convolution theorem. Adv. Appl. Clifford Algebr. 23, 15–38 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    De Bie, H., De Schepper, N., Sommen, F.: The class of Clifford-Fourier transforms. J. Fourier Anal. Appl. 17, 1198–1231 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    De Bie, H., Oste, R., Van der Jeugt, J.: Generalized Fourier transforms arising from the enveloping algebras of s l(2) and osp(1—2). Int. Math. Res. Not. 15, 4649–4705 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    De Bie, H., Xu, Y.: On the Clifford-Fourier transform. Int. Math. Res. Not. 22, 5123–5163 (2011)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Ebling, J., Scheuermann, G.: Clifford Fourier transform on vector fields. IEEE Trans. Vis. Comput. Graph 11, 469–479 (2005)CrossRefGoogle Scholar
  10. 10.
    Ell, T.A., Sangwine, S.J.: Hypercomplex Fourier transforms of color images. IEEE Trans. Image Process 16, 22–35 (2007)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Ghobber, S., Jaming, P.H.: Uncertainty principles for integral operators. Studia Mathematica, INSTYTUT MATEMATYCZNY POLSKA AKADEMIA NAUK 220, 197–220 (2014)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Hitzer, E., Bahri, M.: Clifford Fourier transform on multivector fields and uncertainty principles for dimensions n = 2 (mod4) and n = 3 (mod4). Adv. Appl. Clifford Algebr. 18, 715–736 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Shimeno, N.: A note on the uncertainty principle for the Dunkl transform. J. Math. Sci. Univ. Tokyo 8, 33–42 (2001)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Sommen, F.: Special functions in clifford analysis and axial symmetry. J. Math. Anal. Appl. 130, 110–133 (1988)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Faculty of Sciences MonastirUniversity of MonastirMonastirTunisia
  2. 2.Faculty of Sciences Tunis, LR13ES06 Laboratory Special Functions Harmonic Analysis and AnalogueUniversity of Tunis El ManarTunisTunisia

Personalised recommendations