Advertisement

Weighted Regularity Criteria of Weak Solutions to the Incompressible 3D MHD Equations

  • Jae-Myoung Kim
Article
  • 51 Downloads

Abstract

In this paper, we investigate regularity conditions of the weighted type for weak solutions to the incompressible 3D MHD equations.

Keywords

Magnetohydrodynamics equations Weak solutions Regularity condition 

Mathematics Subject Classification (2010)

35Q35 35B65 76W05 

Notes

Acknowledgments

The authors gratefully thank to the referee for the constructive comments and recommendations which definitely help to improve the readability and quality of the paper. Jae-Myoung Kim’s work is supported by NRF-20151009350 and NRF-2016R1D1A1B03930422.

References

  1. 1.
    Alghamdi, A.M., Gala, S., Ragusa, M.A.: A regularity criterion of weak solutions to the 3D Boussinesq equations. AIMS Mathematics. 2, 451–457 (2017)CrossRefGoogle Scholar
  2. 2.
    Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35, 771–831 (1982)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  4. 4.
    Duvaut, G., Lions, J.L.: Inéquations en thermoélasticité et magnétohydrodynamique (French). Arch. Rational Mech. Anal. 46, 241–279 (1972)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Gala, S., Guo, Z., Ragusa, M.A.: A remark on the regularity criterion of Boussinesq equations with zero heat conductivity. Appl. Math. Lett. 27, 70–73 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gala, S., Ragusa, M.A., Sawano, Y., Tanaka, H.: Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz-Morrey spaces. Appl. Anal. 93, 356–368 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gala, S., Ragusa, M.A.: On the regularity criterion of weak solutions for the 3D MHD equations. Z. Angew. Math. Phys. 68(140) (2017)Google Scholar
  8. 8.
    He, C., Xin, Z.: On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 213, 235–254 (2005)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    He, C., Xin, Z.: Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J. Funct. Anal. 227, 113–152 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mahalov, A., Nicolaenko, A., Shilkin, A.: \(L^{3,\infty }\)-solutions to the MHD equations. Trans. J. Math. Sci. (N. Y.) 143, 2911–2923 (2007)CrossRefGoogle Scholar
  11. 11.
    Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 36, 635–664 (1983)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Stein, E.M.: Note on singular integrals. Proc. Am. Math. Soc. 8, 250–254 (1957)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Vyalov, V.: On the local smoothness of weak solutions to the MHD system near the boundary. J. Math. Sci. 185, 659–667 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Vyalov, V.: On the local smoothness of weak solutions to the MHD system near the boundary. Kraevye Zadachi Matematicheskoi Fiziki i Smezhnye Voprosy Teorii Funktsii. 42:5–19, 172Google Scholar
  15. 15.
    Zhou, Y.: Weighted regularity criteria for the three-dimensional Navier-Stokes equations. Proc. Roy. Soc. Edinburgh Sect. A 139, 661–671 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Center for Mathematical Analysis & ComputationYonsei UniversitySeoulSouth Korea

Personalised recommendations