Absolute Continuity of the Spectrum of Coupled Identical Systems on 1D Lattices

  • B. LangellaEmail author
  • D. BambusiEmail author


We prove that the spectrum of the discrete Schrödinger operator on 2(2)
$$\begin{array}{@{}rcl@{}} (\psi _{n,m})\mapsto -(\psi _{n + 1,m} +\psi _{n-1,m} + \psi _{n,m + 1} +\psi _{n,m-1})+V_{n}\psi _{n,m} \ , \\ \quad (n, m) \in \mathbb {Z}^{2},\ \left \{ V_{n}\right \}\in \ell ^{\infty }(\mathbb {Z}) \end{array} $$
is absolutely continuous.



We thank Didier Robert for pointing to our attention the paper [5].


  1. 1.
    Bourgain, J., Goldstein, M., Schlag, W.: Anderson localization for Schrödinger operators on Z2 with quasi-periodic potential. Acta Math. 188(1), 41–86 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bourgain, J.: Anderson localization for quasi-periodic lattice Schrödinger operators on, d arbitrary. Geom. Funct. Anal. 17(3), 682–706 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Eliasson, L.H., Kuksin, S.B., Marmi, S., Yoccoz, J.C.: Dynamical Systems and Small Divisors, Part 1, Perturbations of linear quasi-periodic systems. Springer, Berlin (2002)CrossRefGoogle Scholar
  4. 4.
    Eliasson, L.H.: Discrete one-dimensional quasi-periodic Schrödinger operators with pure-point spectrum. Acta Math. 179, 153–196 (1997)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fox, D.W.: Spectral measures and separation of variables. J. Res. Natl. Bur. Stand. Sect. B-Math. Sci. 80(3), 347–351 (1976)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bordia, P., Lüschen, H. P., Hodgman, S.S., Schreiber, M., Bloch, I., Schneider, U.: Coupling identical 1D Many-Body localized systems phys. Rev. Lett. 116, 140401 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Fröhlich, J., Spencer, T., Wayne, C.E.: Localization in disordered, nonlinear dynamical systems. J. Stat. Phys. 42(3), 247–274 (1986)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Jitomirskaya, S.: Metal-insulator transition for the almost Mathieu operator. Ann. Math. 150, 1159–1175 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Stefanov, A, Kevrekidis, P.G.: Asymptotic behaviour of small solutions for the discrete nonlinear Schrödinger and Klein–Gordon equations. Nonlinearity 18(4), 1841 (2005)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations