On the Essential Spectrum of Schrödinger Operators on Trees

  • Jonathan BreuerEmail author
  • Sergey Denisov
  • Latif Eliaz


It is known that the essential spectrum of a Schrödinger operator H on \(\ell ^{2}\left (\mathbb {N}\right )\) is equal to the union of the spectra of right limits of H. The natural generalization of this relation to \(\mathbb {Z}^{n}\) is known to hold as well. In this paper we generalize the notion of right limits to general infinite connected graphs and construct examples of graphs for which the essential spectrum of the Laplacian is strictly bigger than the union of the spectra of its right limits. As these right limits are trees, this result is complemented by the fact that the equality still holds for general bounded operators on regular trees. We prove this and characterize the essential spectrum in the spherically symmetric case.


Right limits Schrödinger operators Graph Laplacian Essential spectrum 

Mathematics Subject Classification (2010)

Primary 34L05 Secondary 35J10 


  1. 1.
    Allard, C., Froese, R.: A Mourre estimate for a Schrödinger operator on a binary tree. Rev. Math. Phys. 12(12), 1655–1667 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Amrein, W.O., Mantoiu, M., Purice, R: Propagation properties for Schrödinger operators affiliated with certain \(c^{\ast }\)-algebras. Ann. Henri Poincaré, 3(6), 1215–1232 (2002)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Anselone, P.M.: Collectively compact operator approximation theory and applications to integral equations. Prentice-Hall, Englewood Cliffs (1971)zbMATHGoogle Scholar
  4. 4.
    Bonnefont, M., Golenia, S.: Essential spectrum and Weyl asymptotics for discrete Laplacians. Ann. Fac. Sci. Toulouse Math. (6) 24(3), 563–624 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Breuer, J.: Singular continuous spectrum for the Laplacian on certain sparse trees. Commun. Math. Phys. 269(3), 851–857 (2007)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Chandler-Wilde, S.N., Lindner, M.: Limit Operators, Collective Compactness, and the Spectral Theory of Infinite Matrices, Mem. Amer. Math. Soc. 210, no. 989 (2011)Google Scholar
  7. 7.
    Fujiwara, K.: The Laplacian on rapidly branching trees. Duke Math. J. 83, 191–202 (1996)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Georgescu, V., Golénia, S.: Isometries, Fock spaces, and spectral analysis of Schrödinger operators on trees. J. Funct. Anal. 227(2), 389–429 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Georgescu, V., Iftimovici, A.: Crossed products of \(C^{*}\)-algebras and spectral analysis of quantum Hamiltonians. Commun. Math. Phys. 228(3), 519–560 (2002)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Georgescu, V., Iftimovici, A.: C -algebras of quantum Hamiltonians, Operator Algebras and Mathematical Physics (Constanţa, 2001), pp. 123–167, Theta, Bucharest (2003)Google Scholar
  11. 11.
    Georgescu, V., Iftimovici, A.: Riesz-kolmogorov compactness criterion, Lorentz convergence and Ruelle theorem on locally compact abelian groups. Potential Anal. 20(3), 265–284 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Golénia, S.: C -algebras of anisotropic Schrödinger operators on trees. J. Ann. Henri Poincaré 5(6), 1097–1115 (2004)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Keller, M., Lenz, D.: Unbounded Laplacians on graphs: Basic spectral properties and the heat equation. Math. Model. Nat. Phenom. 5, 198–224 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kurbatov, V.G.: On the invertibility of almost periodic operators. Math. USSR Sb. 67, 367–377 (1990)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lange, B.V., Rabinovich, V.S.: Pseudodifferential operators in \(r^{n}\) and limit operators. Math. Mat. Sb. (N.S.) 129(2), 175–185 (1986). (Russian, English transl. Math. USSR Sb. 57 (1987), 183–194)Google Scholar
  16. 16.
    Last, Y., Simon, B.: Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators. Invent. Math. 135, 329–367 (1999)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Last, Y., Simon, B.: The essential spectrum of Schrödinger, Jacobi, and CMV operators. J. Anal. Math. 98, 183–220 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mantoiu, M.: C -algebras, dynamical systems at infinity and the essential spectrum of generalized Schrödinger operators. J. Reine Angew. Math. 550, 211–229 (2002)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Mantoiu, M., Purice, R., Richard, S.: Spectral and propagation results for magnetic Schroedinger operators; a \(C^{*}\)-algebraic framework. J. Funct. Anal. 250(1), 42–67 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Muhamadiev, E.M.: On invertibility of differential operators in the space of continuous functions bounded on the real axis. Dokl. Akad. Nauk SSSR 196, 47–49 (1971). (Russian, English transl. Soviet Math. Dokl. 12 (1971), 49–52)MathSciNetGoogle Scholar
  22. 22.
    Muhamadiev, E.M.: On the invertibility of elliptic partial differential operators. Dokl. Akad. Nauk SSSR 250, 1292–1295 (1972). (Russian, English transl. Soviet Math. Dokl. 13 (1972), 1122–1126)MathSciNetGoogle Scholar
  23. 23.
    Rabinovich, V.S., Roch, S., Silbermann, B.: Fredholm theory and finite section method for band-dominated operators. Integr. Equ. Oper. Theory 30, 452–495 (1998)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Rabinovich, V.S., Roch, S., Silbermann, B.: Band-dominated operators with operator-valued coefficients, their Fredholm properties and finite sections. Integr. Equ. Oper. Theory 40(3), 342–381 (2001)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Seidel, M., Silbermann, B.: Banach algebras of operator sequences. Oper. Matrices 6(3), 385–432 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Shubin, M.A.: The Favard-Muhamadiev theory and pseudodifferential operators. Dokl. Akad. Nauk SSSR 225(6), 1278–1280 (1975). (Russian, English transl. Soviet Math. Dokl. 16 (1975), 1646–1649)MathSciNetGoogle Scholar
  27. 27.
    Shubin, M.A.: Almost periodic functions and partial differential operators. Uspehi Mat. Nauk 33(2), 3–47 (1978). 247 (Russian, English transl. Russian Math. Surveys 33 (1978), 1–52)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Simon, B.: Szegő’s Theorem and its Descendants. In: M. B. Porter Lectures, Princeton University Press, Princeton, NJ. Spectral Theory for \(L^{2}\) Perturbations of Orthogonal Polynomials (2011)Google Scholar
  29. 29.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, I. Functional Analysis. Academic Press, New York (1980)zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute of MathematicsThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Department of MathematicsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations