Note on the Intermediate Field Representation of \(\phi ^{2k}\) Theory in Zero Dimension

  • Luca Lionni
  • Vincent RivasseauEmail author


This note is a sequel to Rivasseau and Wang (J. Math. Phys. 51, 092304, 2010). We correct the intermediate field representation for the stable \(\phi ^{2k}\) field theory in zero dimension introduced there and extend it to the case of complex conjugate fields. For \(k = 3\) in the complex case we also provide an improved representation which relies on ordinary convergent Gaussian integrals rather than oscillatory integrals.


Constructive field theory Loop vertex expansion Borel summability 

Mathematics Subject Classification (2010)



  1. 1.
    Rivasseau, V., Wang, Z.: Loop Vertex Expansion for Phi**2K Theory in Zero Dimension. J. Math. Phys. 51, 092304 (2010). arXiv:1003.1037 [math-ph]ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Rivasseau, V.: Constructive Matrix Theory. JHEP 0709, 008 (2007). arXiv:0706.1224 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Magnen, J., Rivasseau, V.: Constructive \(\phi ^{4}\) field theory without tears. Ann. Henri Poincare 9, 403 (2008). arXiv:0706.2457 [math-ph]ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Rivasseau, V.: Constructive Field Theory in Zero Dimension, vol. 2010. arXiv:0906.3524 [math-ph] (2010)
  5. 5.
    Rivasseau, V., Wang, Z.: How to Resum Feynman Graphs. Ann. Henri Poincare 15(11), 2069 (2014). arXiv:1304.5913 [math-ph]ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Magnen, J., Noui, K., Rivasseau, V., Smerlak, M.: Scaling behaviour of three-dimensional group field theory. Class. Quant. Grav. 26, 185012 (2009). arXiv:0906.5477 [hep-th]ADSCrossRefGoogle Scholar
  7. 7.
    Gurau, R.: The 1/N Expansion of Tensor Models Beyond Perturbation Theory. Commun. Math. Phys. 330, 973 (2014). arXiv:1304.2666 [math-ph]ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Gurau, R., Krajewski, T.: Analyticity results for the cumulants in a random matrix model, arXiv:1409.1705 [math-ph]
  9. 9.
    Rivasseau, V., Wang, Z.: Corrected loop vertex expansion for \({{\Phi }_{2}^{4}}\) theory. J. Math. Phys. 56 (6), 062301 (2015). arXiv:1406.7428 [math-ph]ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Delepouve, T., Gurau, R., Rivasseau, V.: Universality and Borel Summability of Arbitrary Quartic Tensor Models, arXiv:1403.0170 [hep-th]
  11. 11.
    Delepouve, T., Rivasseau, V.: Constructive Tensor Field Theory: The \({T^{4}_{3}}\) Model, arXiv:1412.5091 [math-ph]
  12. 12.
    Lahoche, V.: Constructive Tensorial Group Field Theory I:The \(U(1)-{T^{4}_{3}}\) Model, arXiv:1510.05050 [hep-th]
  13. 13.
    Lahoche, V.: Constructive Tensorial Group Field Theory II: The \(U(1)-{T^{4}_{4}}\) Model, arXiv:1510.05051 [hep-th]
  14. 14.
    Gurau, R., Rivasseau, V.: The Multiscale Loop Vertex Expansion. Ann. Henri Poincare 16(8), 1869 (2015). arXiv:1312.7226 [math-ph]ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Rivasseau, V., Vignes-Tourneret, F.: Constructive tensor field theory: The \({T^{4}_{4}}\) model, arXiv:1703.06510 [math-ph]
  16. 16.
    Delepouve, T., Rivasseau, V.: Constructive Tensor Field Theory: The \({T^{4}_{3}}\) Model. Commun. Math. Phys. 345 (2), 477 (2016). arXiv:1412.5091 [math-ph]ADSCrossRefGoogle Scholar
  17. 17.
    Lionni, L., Rivasseau, V.: Intermediate Field Representation for Positive Matrix and Tensor Interactions, arXiv:1609.05018 [math-ph]
  18. 18.
    Rivasseau, V.: Loop Vertex Expansion for Higher Order Interactions. Lett. Math. Phys. 108(5), 1147 (2018). arXiv:1702.07602 [math-ph]ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Krajewski, T., Rivasseau, V., Sazonov, V.: Constructive Matrix Theory for Higher Order Interaction, arXiv:1712.05670 [math-ph]
  20. 20.
    Sokal, A.D.: An improvement of watson’s theorem on borel summability. J. Math. Phys. 21, 261 (1980)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Bonzom, V., Gurau, R., Riello, A., Rivasseau, V.: Critical behavior of colored tensor models in the large N limit. Nucl.Phys.B 853, 174 (2011). arXiv:1105.3122 [hep-th]ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique, CNRS UMR 8627Université Paris XIOrsay CedexFrance

Personalised recommendations