Advertisement

Topological Boundary Invariants for Floquet Systems and Quantum Walks

  • Christian Sadel
  • Hermann Schulz-BaldesEmail author
Article

Abstract

A Floquet systems is a periodically driven quantum system. It can be described by a Floquet operator. If this unitary operator has a gap in the spectrum, then one can define associated topological bulk invariants which can either only depend on the bands of the Floquet operator or also on the time as a variable. It is shown how a K-theoretic result combined with the bulk-boundary correspondence leads to edge invariants for the half-space Floquet operators. These results also apply to topological quantum walks.

Keywords

Floquet topological insulators Quantum walks Connecting maps in K-theory 

Mathematics Subject Classifications (2010)

46L80 82C10 37L05 

Notes

Acknowledgements

The authors thank Rafeal Tiedra for discussions on quantum walks, and the Instituto de Matematicas (UNAM), Cuernavaca, for its hospitality during a visit in July 2017 when this work was written. We also thank an unknown referee for a careful reading and constructive comments. An independent contribution on similar matters by Graf and Tauber [10] appeared on the arXiv while preparing the final version of this manuscript. It also proves bulk-boundary correspondence for Floquet systems, but is restricted to two-dimensional models. It provides a more ad hoc functional analytic treatment, while here the general theory of bulk-boundary correspondence of topological insulators from [16] is combined with a K-theoretic fact (Theorem 2) not contained in [10]. Before preparing the final revision of this work, another related draft on edge states in the Chalker-Coddington model was posted by Asch, Bourget and Joye [3]. This research was partly supported by the Chilean grant FONDECYT Regular 1161651 and the DFG.

References

  1. 1.
    Asbóth, J.K., Tarasinski, B., Delplace, P.: Chiral symmetry and bulk-boundary correspondence in periodically driven one-dimensional systems. Phys. Rev. B 90, 125143 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Asch, J., Bourget, O., Joye, A.: Spectral stability of unitary network models. Rev. Math. Phys. 27, 1530004 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Asch, J., Bourget, O., Joye, A.: Chirality induced interface currents in the Chalker Coddington model. arXiv:1708.02120
  4. 4.
    Bellissard, J.: K-theory of C -algebras in solid state physics. In: Dorlas, T., Hugenholtz, M., Winnink, M. (eds.) Statistical mechanics and field theory: mathematical aspects, lecture notes in physics, vol. 257, pp 99–156. Springer, Berlin (1986)Google Scholar
  5. 5.
    Carpentier, D., Delplace, P., Fruchart, M., Gawedzki, K., Tauber, C.: Construction and properties of a topological index for periodically driven time-reversal invariant 2D crystals. Nucl. Phys. B 896, 779–834 (2015)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Chalker, J.T., Coddington, P.D.: Percolation, quantum tunnelling and the integer Hall effect. J. Phys. C Solid State 21, 2665 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    Delplace, P., Fruchart, M., Tauber, C.: Phase rotation symmetry and the topology of oriented scattering networks. Phys. Rev. B 95, 205413 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Elbau, P., Graf, G.M.: Equality of bulk and edge Hall conductance revisited. Commun. Math. Phys. 229, 415–432 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fruchart, M.: Complex classes of periodically driven topological lattice systems. Phys. Rev. B 93, 115429 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Graf, G.M., Tauber, C.: Bulk-Edge correspondence for two-dimensional Floquet topological insulators. arXiv:1707.09212
  11. 11.
    Ho, C.-M., Chalker, J.T.: Models for the integer quantum Hall effect: The network model, the Dirac equation, and a tight-binding Hamiltonian. Phys. Rev. B 54, 8708 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    Nathan, F., Rudner, M.S.: Topological singularities and the general classification of Floquet-Bloch systems. New J Phys. 17, 125014 (2015)CrossRefGoogle Scholar
  13. 13.
    Kellendonk, J., Richter, T., Schulz-Baldes, H.: Edge current channels and Chern numbers in the integer quantum Hall effect. Rev. Math. Phys. 14, 87–119 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kitagawa, T.: Topological phenomena in quantum walks: elementary introduction to the physics of topological phases. Quantum Inf. Process 11(5), 1107–1148 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pasek, M., Chong, Y.D.: Network models of photonic Floquet topological insulators. Phys. Rev. B 89, 075113 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators: From K-theory to Physics. Springer International Publishing, Szwitzerland (2016)CrossRefzbMATHGoogle Scholar
  17. 17.
    Rordam, M., Larsen, F., Laustsen, N.: An Introduction to K-theory for C -Algebras. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
  18. 18.
    Rudner, M.S., Lindner, N.H., Berg, E., Levin, M.: Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3, 031005 (2013)Google Scholar
  19. 19.
    Ryu, S., Schnyder, A.P., Furusaki, A., Ludwig, A.W.W.: Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12, 065010 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Schulz-Baldes, H., Kellendonk, J., Richter, T.: Similtaneous quantization of edge and bulk Hall conductivity. J. Phys. A 33, L27–L32 (2000)ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    Wegge-Olsen, N.E.: K-Theory and C -Algebras. Oxford University Press, Oxford (1993)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Facultad de MatemáticasPontificia Universidad Catòlica de ChileRegión MetropolitanaChile
  2. 2.Department MathematikFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations