Advertisement

Nonexistence in Thomas-Fermi-Dirac-von Weizsäcker Theory with Small Nuclear Charges

  • Phan Thành Nam
  • Hanne Van Den Bosch
Article

Abstract

We study the ionization problem in the Thomas-Fermi-Dirac-von Weizsäcker theory for atoms and molecules. We prove the nonexistence of minimizers for the energy functional when the number of electrons is large and the total nuclear charge is small. This nonexistence result also applies to external potentials decaying faster than the Coulomb potential. In the case of arbitrary nuclear charges, we obtain the nonexistence of stable minimizers and radial minimizers.

Keywords

Thomas-Fermi-Dirac-von Weizsäcker Theory Ionization problem Concentration-compactness method 

Mathematics Subject Classification (2010)

35Q40 

References

  1. 1.
    Benguria, R. D.: The Von Weizsäcker and Exchange Corrections in the Thomas Fermi Theory. Ph.D. Thesis, Princeton University (1979)Google Scholar
  2. 2.
    Benguria, R. D., Brezis, H., Lieb, E. H.: The Thomas-Fermi-von weizsäcker theory of atoms and molecules. Commun. Math. Phys. 79, 167–180 (1981)ADSCrossRefMATHGoogle Scholar
  3. 3.
    Benguria, R. D., Lieb, E. H.: The most negative ion in the Thomas-Fermi-von Weizsäcker theory of atoms and molecules. J. Phys. B 18, 1045–1059 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    Brezis, H., Lieb, E. H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88, 486–490 (1983)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Le Bris, C.: Some results on the Thomas-Fermi-Dirac-von weizsäcker model. Differential Integral Equations 6, 337–352 (1993)MathSciNetMATHGoogle Scholar
  6. 6.
    Dirac, P. A. M.: Note on exchange phenomena in the Thomas atom. Proc. Cambridge Philos. Soc. 26(3), 376–385 (1930)ADSCrossRefMATHGoogle Scholar
  7. 7.
    Fefferman, C., Seco, L. A.: Asymptotic neutrality of large ions. Commun. Math. Phys. 128, 109–130 (1990)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fermi, E.: Un metodo statistico per la determinazione di alcune proprietà dell’atomo. Rend. Accad. Naz. Lincei 6, 602–607 (1927)Google Scholar
  9. 9.
    Frank, R. L., Nam, P. T., Van Den Bosch, H.: The ionization conjecture in Thomas-Fermi-Dirac-von weizsäcker theory. Preprint (2016) arXiv:1606.07355
  10. 10.
    Lewin, M.: Describing lack of compactness in \(H^{1}(\mathbb {R}^{d})\), Lecture Notes on Variational Methods in Quantum Mechanics, University of Cergy-Pontoise (2010)Google Scholar
  11. 11.
    Lieb, E. H.: Thomas-fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Lieb, E. H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29, 3018–3028 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    Lieb, E. H., Loss, M.: Analysis. Providence, RI, American Mathematical Society (2001)CrossRefMATHGoogle Scholar
  14. 14.
    Lieb, E. H., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press (2010)Google Scholar
  15. 15.
    Lieb, E. H., Sigal, I. M., Simon, B., Thirring, W.: Approximate neutrality of large-Z ions. Commun. Math. Phys. 116, 635–644 (1988)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Lieb, E. H., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lions, P. -L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part I. Ann. Inst. H. Poincaré, Anal. Non Linéaire 1, 109–149 (1984)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lions, P. -L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part II. Ann. Inst. H. Poincaré, Anal. Non Linéaire 1, 223–283 (1984)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Lions, P. -L.: Solutions of Hartree-Fock equations for Coulomb systems. Commun. Math. Phys. 109, 33–97 (1987)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Lu, J., Otto, F.: Nonexistence of a minimizer for Thomas-Fermi-Dirac-Von Weizsäcker model. Comm. Pure Appl. Math. 67, 1605–1617 (2014)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Nam, P. T.: New bounds on the maximum ionization of atoms. Commun. Math. Phys. 312, 427–445 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Ruskai, M. B.: Absence of discrete spectrum in highly negative ions: II. Extension to fermions. Commun. Math. Phys. 85, 325–327 (1982)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Sánchez, O., Soler, J.: Long-time dynamics of the schrödinger–poisson–slater system. J. Stat. Phys. 114, 179–204 (2004)ADSCrossRefMATHGoogle Scholar
  24. 24.
    Seco, L. A., Sigal, I. M., Solovej, J. P.: Bound on the ionization energy of large atoms. Commun. Math. Phys. 131, 307–315 (1990)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Sigal, I. M.: Geometric methods in the quantum many-body problem. Non existence of very negative ions. Commun. Math. Phys. 85, 309–324 (1982)ADSCrossRefMATHGoogle Scholar
  26. 26.
    Simon, B.: Schrödinger operators in the twenty-first century. In: Fokas, A., Grigotyan, A., Kibble, T., Zegarlinski, B. (eds.) Mathematical Physics 2000, pp 283–288. Imperial College Press, London (2000)CrossRefGoogle Scholar
  27. 27.
    Solovej, J. P.: Proof of the ionization conjecture in a reduced Hartree-Fock model. Invent. Math. 104, 291–311 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Solovej, J. P.: The ionization conjecture in Hartree-Fock theory. Ann. of Math. 158(2), 509–576 (2003)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Teller, E.: On the Stability of molecules in the Thomas-Fermi theory. Rev. Mod. Phys. 34(4), 627–631 (1962)ADSCrossRefMATHGoogle Scholar
  30. 30.
    Thomas, L. H.: The calculation of atomic fields. Proc. Cambridge Phil. Soc. 23(5), 542–548 (1927)ADSCrossRefMATHGoogle Scholar
  31. 31.
    Weizsac̈ker, C F: Zur Theorie der Kernmassen. Zeitschrift Fur̈ Physik 96, 431–458 (1935)ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Institute of Science and Technology AustriaKlosterneuburgAustria
  2. 2.Instituto de FísicaPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations