Twisted Reality Condition for Dirac Operators

  • Tomasz Brzeziński
  • Nicola Ciccoli
  • Ludwik Dąbrowski
  • Andrzej Sitarz


Motivated by examples obtained from conformal deformations of spectral triples and a spectral triple construction on quantum cones, we propose a new twisted reality condition for the Dirac operator.


Dirac operator Reality Twist Spectral triple 

Mathematics Subject Classification (2010)

58B34 58B32 46L87 


  1. 1.
    Brzeziński, T.: Complex geometry of quantum cones. Fortsch.Physik 62, 875–880 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Brzeziński, T., Sitarz, A.: Smooth geometry of the noncommutative pillow, cones and lens spaces, arXiv:1410.6587 to appear in J. Noncomm. Geom.
  3. 3.
    Connes, A.: Noncommutative geometry and reality. J. Math. Phys 36, 6194–6231 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Connes, A., Landi, G.: Noncommutative manifolds, the instanton algebra and isospectral deformations. Comm. Math. Phys. 221, 141–159 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Connes, A., Tretkoff, P.: The Gauss-Bonnet theorem for the noncommutative two torus. In: Noncommutative Geometry, Arithmetic, and Related Topics, pp. 141–158. Johns Hopkins University Press (2011)Google Scholar
  6. 6.
    Connes, A.: On the spectral characterization of manifolds. J. Noncom. Geom 7, 1–82 (2013)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Dąbrowski, L., Sitarz, A.: Dirac operator on the standard Podleś quantum sphere, Noncommutative geometry and quantum groups. in: Banach Center Publ., vol. 61, pp.49–58. Warsaw (2003)Google Scholar
  8. 8.
    Dąbrowski, L., Sitarz, A.: Asymmetric noncommutative torus. SIGMA 11, 075–086 (2015)MathSciNetMATHGoogle Scholar
  9. 9.
    Dąbrowski, L., Landi, G., Sitarz, A., van Suijlekom, W., Varilly, J.C.: The Dirac operator on S U q(2). Comm. Math. Phys 259, 729–759 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gayral, V., Gracia-Bondía, J., Iochum, B., Schücker, T., Várilly, J.C.: Moyal planes are spectral triples. Comm. Math. Phys 246, 569–623 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hadfield, T., Krähmer, U.: Twisted homology of quantum SL(2). J. K-Theory 6, 69–98 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hawking, E.: Noncommutative rigidity. Comm. Math. Phys. 246, 211–235 (2004)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Klimek, S., Lesniewski, A.: A two-parameter quantum deformation of the unit disc. J. Funct. Anal 115, 1–23 (1993)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Krajewski, T.: Classification of finite spectral triples. J. Geom. Phys. 28, 1–30 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Landi, G., Martinetti, P.: On twisting real spectral triples by algebra automorphisms. arXiv:1601.00219
  16. 16.
    Latrémolière, F.: Curved noncommutative tori as Leibniz quantum compact metric spaces. J. Math. Phys. 56, 123503 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Olczykowski, P., Sitarz, A.: Real spectral triples over noncommutative Bieberbach manifolds. J. Geom. Phys 73, 91–103 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Paschke, M., Sitarz, A.: Discrete spectral triples and their symmetries. J. Math. Phys 39, 6191–6205 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Paschke, M., Sitarz, A.: On spin structures and Dirac operators on the noncommutative torus. Lett. Math. Phys 77, 317–327 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Rennie, A., Sitarz, A., Yamashita, M.: Twisted cyclic cohomology and modular Fredholm modules. SIGMA 9 051, 15 (2013)MathSciNetMATHGoogle Scholar
  21. 21.
    Sitarz, A.: Twists and spectral triples for isospectral deformations. Lett. Math. Phys 58, 69–79 (2001)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Sitarz, A.: Conformally rescaled noncommutative geometries. In: Geometric Methods in Physics, Trends in Mathematics. Springer (2015)Google Scholar
  23. 23.
    Varilly, J.C.: Quantum symmetry groups of noncommutative spheres. Comm. Math. Phys 221, 511–523 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Venselaar, J.-J.: Classification of spin structures on the noncommutative n-torus. J. Noncomm. Geom 7, 787–816 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of MathematicsSwansea UniversitySwanseaUK
  2. 2.Department of MathematicsUniversity of BiałystokBiałystokPoland
  3. 3.Dipartimento di Matematica e InformaticaUniversitá di PerugiaPerugiaItaly
  4. 4.SISSA (Scuola Internazionale Superiore di Studi Avanzati)TriesteItaly
  5. 5.Institute of PhysicsJagiellonian UniversityKrakówPoland
  6. 6.Institute of Mathematics of the Polish Academy of SciencesWarszawaPoland

Personalised recommendations