The Casimir Effect from the Point of View of Algebraic Quantum Field Theory

  • Claudio Dappiaggi
  • Gabriele Nosari
  • Nicola Pinamonti


We consider a region of Minkowski spacetime bounded either by one or by two parallel, infinitely extended plates orthogonal to a spatial direction and a real Klein-Gordon field satisfying Dirichlet boundary conditions. We quantize these two systems within the algebraic approach to quantum field theory using the so-called functional formalism. As a first step we construct a suitable unital ∗-algebra of observables whose generating functionals are characterized by a labelling space which is at the same time optimal and separating and fulfils the F-locality property. Subsequently we give a definition for these systems of Hadamard states and we investigate explicit examples. In the case of a single plate, it turns out that one can build algebraic states via a pull-back of those on the whole Minkowski spacetime, moreover inheriting from them the Hadamard property. When we consider instead two plates, algebraic states can be put in correspondence with those on flat spacetime via the so-called method of images, which we translate to the algebraic setting. For a massless scalar field we show that this procedure works perfectly for a large class of quasi-free states including the Poincaré vacuum and KMS states. Eventually Wick polynomials are introduced. Contrary to the Minkowski case, the extended algebras, built in globally hyperbolic subregions can be collected in a global counterpart only after a suitable deformation which is expressed locally in terms of a *-isomorphism. As a last step, we construct explicitly the two-point function and the regularized energy density, showing, moreover, that the outcome is consistent with the standard results of the Casimir effect.


Algebraic quantum field theory Hadamard states Casimir effect 

Mathematics Subject Classification (2010)

81T05 81T55 81T20 


  1. 1.
    Bär, C.: Green-hyperbolic operators on globally hyperbolic spacetimes. Comm. Math. Phys. 333(3), 1585 (2015). arXiv:1310.0738 [math-ph]
  2. 2.
    Brunetti, R., Duetsch, M., Fredenhagen, K.: Perturbative Algebraic Quantum Field Theory and the Renormalization Groups. Adv. Theor. Math. Phys. 13, 1541 (2009). arXiv:0901.2038 [math-ph]MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brunetti, R., Fredenhagen, K., Ribeiro, P.L.: Algebraic Structure of Classical Field Theory I: Kinematics and Linearized Dynamics for Real Scalar Fields. arXiv:1209.2148 [math-ph]
  4. 4.
    Benini, M., Dappiaggi, C., Hack, T.P.: Quantum Field Theory on Curved Backgrounds – A Primer. Int. J. Mod. Phys. A 28, 1330023 (2013). arXiv:1306.0527 [gr-qc]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Benini, M., Dappiaggi, C., Murro, S.: Radiative observables for linearized gravity on asymptotically flat spacetimes and their boundary induced states. J. Math. Phys. 55, 082301 (2014). arXiv:1404.4551 [gr-qc]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Benini, M., Dappiaggi, C., Schenkel, A.: Quantum field theory on affine bundles. Annales Henri Poincare 15, 171 (2014). arXiv:1210.3457 [math-ph]MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Benini, M., Dappiaggi, C., Schenkel, A.: Quantized Abelian principal connections on Lorentzian manifolds. Commun. Math. Phys. 330, 123 (2014). arXiv:1303.2515 [math-ph]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Benini, M.: Optimal space of linear classical observables for Maxwell k-forms via spacelike and timelike compact de Rham cohomologies. J. Math. Phys. 57, 053502 (2016). arXiv:1401.7563 [math-ph]
  9. 9.
    Brunetti, R., Fredenhagen, K.: Quantum Field Theory on Curved Backgrounds. arXiv:0901.2063 [gr-qc]
  10. 10.
    Brunetti, R., Fredenhagen, K., Verch, R.: The Generally covariant locality principle: A New paradigm for local quantum field theory. Commun. Math. Phys. 237, 31 (2003). arXiv:math-ph/0112041 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization, 1St Edn. (Eur Math. Soc., Zürich, 2007)Google Scholar
  12. 12.
    Brown, L.S., Maclay, G.J.: Vacuum stress between conducting plates: An Image solution. Phys. Rev. 184, 1272 (1969)ADSCrossRefGoogle Scholar
  13. 13.
    Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Indag. Math 10, 261 (1948)zbMATHGoogle Scholar
  14. 14.
    Callan, C.G. Jr., Coleman, S.R., jackiw, R.: A New improved energy - momentum tensor. Annals Phys. 59, 42 (1970)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Casimir, H.B.G., Polder, D.: The Influence of retardation on the London-van der Waals forces. Phys. Rev. 73, 360 (1948)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Deutsch, D., Candelas, P.: Boundary effects in quantum field theory. Phys. Rev. D 20, 3063 (1979)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Dimock, J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77, 219 (1980)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fewster, C.J., Higuchi, A.: Quantum field theory on certain nonglobally hyperbolic space-times. Class. Quant. Grav. 51 (1996). arXiv:gr-qc/9508051
  19. 19.
    Fewster, C.J., Hunt, D.S.: Quantization of linearized gravity in cosmological vacuum spacetimes. Rev. Math. Phys. 25, 1330003 (2013). arXiv:1203.0261 [math-ph]MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fewster, C.J., Pfenning, M.J.: A Quantum weak energy inequality for spin one fields in curved space-time. J. Math. Phys. 44, 4480 (2003). arXiv:gr-qc/0303106 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Fredenhagen, K., Rejzner, K.: Perturbative algebraic quantum field theory. arXiv:1208.1428 [math-ph]
  22. 22.
    Fulling, S.A., Reijsenaars, S.N.M.: Temperature, periodicity and horizons. Phys. Rep. 152, 135 (1987)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Fulling, S.A.: Aspects of Quantum Field Theory in Curved Space-time. London Math. Soc. Student Texts 17, 1 (1989)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals Series and Products, 7th. Academic, New York (2007)zbMATHGoogle Scholar
  25. 25.
    Haag, R., Kastler, D.: An Algebraic approach to quantum field theory. J. Math. Phys. 5, 848 (1964)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hack, T. -P.: On the Backreaction of Scalar and Spinor Quantum Fields in Curved Spacetimes. arXiv:1008.1776 [Gr-Qc], PhD thesis, Universität Hamburg (2010)
  27. 27.
    Herdegen, A.: Quantum backreaction (Casimir) effect. I. What are admissible idealizations?. Annales Henri Poincare 6, 657 (2005). arXiv:hep-th/0412132 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Herdegen, A.: Quantum backreaction (Casimir) effect. II. Scalar and electromagnetic fields. Annales Henri Poincare 7, 253 (2006). arXiv:hep-th/0507023 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Herdegen, A., Stopa, M.: Global versus local Casimir effect. Annales Henri Poincare 11, 1171 (2010). arXiv:1007.2139 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Hollands, S., Wald, R.M.: Local Wick polynomials and time ordered products of quantum fields in curved space-time. Commun. Math. Phys. 223, 289 (2001). arXiv:gr-qc/0103074 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Hollands, S., Wald, R.M.: Quantum fields in curved spacetime. arXiv:1401.2026 [gr-qc]
  32. 32.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators I, 2nd. Springer, Berlin (1990)CrossRefzbMATHGoogle Scholar
  33. 33.
    Kay, B.S.: Casimir effect in quantum field theory. Phys. Rev. D 20, 3052 (1979)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Kay, B.S.: The Principle of locality and quantum field theory on (nonglobally hyperbolic) curved space-times. Rev. Math. Phys. SI 1, 167 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Kennedy, G., Critchley, R., Dowker, J.S.: Finite Temperature Field Theory with Boundaries: Stress Tensor and Surface Action renorMalization. Annals Phys. 125, 346 (1980)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    ühn, H.K: Thermische Observablen gekoppelter Felder in Casimir-Effekt, Diploma Thesis in German, Universität Hamburg. available at (2005)
  37. 37.
    Lee, J.M.: Introduction to smooth manifolds. Springer, Berlin (2000)Google Scholar
  38. 38.
    Milton, K.A.: The Casimir Effect: Physical Manifestations of Zero-point Energy. World Scientific (2001)Google Scholar
  39. 39.
    Moretti, V.: Comments on the stress energy tensor operator in curved space-time. Commun. Math. Phys. 232, 189 (2003). arXiv:gr-qc/0109048 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Niekerken, O.: Quantum and Classical Vacuum Forces at Zero and Finite Temperature, Diploma Thesis in German. Universität Hamburg, available at (2009)
  41. 41.
    Radzikowski, M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Radzikowski, M.J.: A Local to global singularity theorem for quantum field theory on curved space-time. Commun. Math. Phys. 180, 1 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Sahlmann, H., Verch, R.: Passivity and microlocal spectrum condition. Commun. Math. Phys. 214, 705 (2000). arXiv:math-ph/0002021 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Sanders, K., Dappiaggi, C., Hack, T.-P.: Electromagnetism, Local Covariance, the Aharonov-Bohm Effect and Gauss Law. Commun. Math. Phys. 328, 625 (2014). arXiv:1211.6420 [math-ph]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Sommer, C.: Algebraische Charakterisierung von Randbedingungen in der Quantenfeldtheorie , Diploma Thesis in German, Universität Hamburg. available at (2006)
  46. 46.
    Sopova, V., Ford, L.H.: Energy density in the Casimir effect. Phys. Rev. D 66, 045026 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    Wald, R.M.: General Relativity, 1st. The University of Chicago Press, Chicago (1984)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Claudio Dappiaggi
    • 1
    • 2
  • Gabriele Nosari
    • 1
    • 2
  • Nicola Pinamonti
    • 3
    • 4
  1. 1.Dipartimento di FisicaUniversità degli Studi di PaviaPaviaItaly
  2. 2.Istituto Nazionale di Fisica Nucleare - Sezione di PaviaPaviaItaly
  3. 3.Dipartimento di MatematicaUniversità di GenovaGenovaItaly
  4. 4.Istituto Nazionale di Fisica Nucleare - Sezione di GenovaGenovaItaly

Personalised recommendations