Advertisement

Legendre Duality of Spherical and Gaussian Spin Glasses

  • Giuseppe GenoveseEmail author
  • Daniele Tantari
Article

Abstract

The classical result of concentration of the Gaussian measure on the sphere in the limit of large dimension induces a natural duality between Gaussian and spherical models of spin glass. We analyse the Legendre variational structure linking the free energies of these two systems, in the spirit of the equivalence of ensembles of statistical mechanics. Our analysis, combined with the previous work (Barra et al., J. Phys. A: Math. Theor. 47, 155002, 2014), shows that such models are replica symmetric. Lastly, we briefly discuss an application of our result to the study of the Gaussian Hopfield model.

Keywords

Spin glasses Spherical model Neural networks 

Mathematics Subject Classification (2010)

60F10 60K35 82B44 

References

  1. 1.
    Anderson, G., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press (2010)Google Scholar
  2. 2.
    Barra, A., Guerra, F.: Locking of order parameters in analogical associative neural networks. In: Incrociati, P., Vitolo, A., et al. (eds.) (2009)Google Scholar
  3. 3.
    Barra, A., Genovese, G., Guerra, F.: Equilibrium statistical mechanics of bipartite spin systems. J. Phys. A: Math. Theor. 44, 245002 (2011)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Barra, A., Genovese, G., Guerra, F., Tantari, D.: About a solvable mean field model of a Gaussian spin glass. J. Phys. A: Math. Theor. 47, 155002 (2014)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Barra, A., Genovese, G., Guerra, F., Tantari, D.: How glassy are neural networks? J. Stat. Mech., P07009 (2012)Google Scholar
  6. 6.
    Ben Arous, G., Dembo, A., Guionnet, A.: Aging of spherical spin glasses. Prob. Theor. Related Fields 120, 1 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Berlin, T.H., Kac, M.: The Spherical Model of a Ferromagnet. Phys. Rev. 86, 821 (1952)CrossRefADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    Bovier, A.: Statistical mechanics of disordered system. A mathematical perspective. Cambridge University Press (2006)Google Scholar
  9. 9.
    Crisanti, A., Sommers, H.-J.: The spherical p-spin interaction p-spin glass model: the statistics. Z. Phys. B Condensed Matter 83, 341 (1992)CrossRefADSGoogle Scholar
  10. 10.
    Diaconis, P., Freedman, D.: A dozen de Finetti-style results in search of a theory. Ann. Inst. H. Poincaré Prob. et Stat. 23, 397 (1987)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Fyodorov, Y.V., Sommers, H.-J.: Classical Particle in a Box with Random Potential: exploiting rotational symmetry of replicated Hamiltonian. Nucl. Phys. B 764, 128 (2007)CrossRefADSMathSciNetzbMATHGoogle Scholar
  12. 12.
    Franz, S., Tria, F.: A Note on the Guerra and Talagrand Theorems for Mean Field Spin Glasses: The Simple Case of Spherical Models. J. Stat. Phys. 122, 313 (2005)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Genovese, G.: Universality in Bipartite Mean Field Spin Glasses. J. Math. Phys. 53, 123304 (2012)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Guerra, F.: An Introduction to Mean Field Spin Glass Theory: Methods and Results. In: Bovier, A., et al. (eds.) : Les Houches, Session LXXXIII (2005)Google Scholar
  15. 15.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. USA 79, 2554–2558 (1982)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Kosterlitz, J.M., Thouless, D.J., Raymund, C.: Jones, Spherical model of a spin glass. Phys. Rev. Lett. 36, 1217 (1976)CrossRefADSGoogle Scholar
  17. 17.
    McKean, H.P.: Geometry of Differential Spaces. Ann. Prob. 1, 197 (1973)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Montroll, E.W.: Continuum Models of Cooperative Phenomenon. Il Nuovo Cimento VI, 264 (1949)Google Scholar
  19. 19.
    Panchenko, D.: Cavity method in the spherical SK model. Ann. Inst. H. Poincarè, Prob. et Stat. 45, 1020 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Panchenko, D., Talagrand, M.: On the Overlap in the Multiple Spherical Models. Ann. Probab. 35, 2321 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Ruelle, D.: Statistical Mechanics. Rigorous results. W.A. Benjamin Inc., New York (1969)zbMATHGoogle Scholar
  22. 22.
    Talagrand, M.: Free energy of the spherical mean field model. Prob. Theor. Related Fields 134, 339 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Talagrand, M.: Mean Field Models for Spin Glasses, Vol. 1,2. Springer-Verlag, Berlin Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Tao, T.: Topics in Random Matrix Theory, AMS Graduate Studies in Mathematics, Providence, Rhode Island (2012)Google Scholar
  25. 25.
    Von Neumann, J.: Distribution of the Ratio of the Mean Square Successive Difference to the Variance. Ann. Math. Stat. 12, 367 (1941)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institut für MathematikUniversität ZürichZürichSwitzerland
  2. 2.Centro Ennio de GiorgiScuola Normale Superiore di PisaPisaItaly

Personalised recommendations