Mathematical Physics, Analysis and Geometry

, Volume 17, Issue 3–4, pp 369–376 | Cite as

(m, ρ)-Quasi-Einstein Metrics in the Frame-Work of K-Contact Manifolds

  • Amalendu GhoshEmail author


The aim of this note is to prove that if a complete K-contact manifold M of dimension (2n + 1) admits a (m, ρ)-quasi-Einstein metric with m ≠ 1, then we prove that f is constant and M becomes compact, Einstein and Sasakian.


Contact metric manifold K-contact manifold Generalized quasi-Einstein metric (m, ρ)-quasi-Einstein metric 

Mathematics Subject Classification (2010)

53C24 53C15 53C21 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barros, A., Ribeiro, E.Jr.: Some characterizations for compact almost Ricci solitons. Proc. Amer. Math. Soc. 140(3), 213–223 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barros, A., Ribeiro, E.Jr.: Characterizations and integral formulae for generalized m-quasi-Einstein metrics. Bull. Brazilian Math. Soc. 45, 324–341 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Besse, A.L.: Einstein manifolds. Springer, Berlin (1987)CrossRefzbMATHGoogle Scholar
  4. 4.
    Blair, D.E.: Riemannian geometry of contact and symplectic manifolds. Birkhauser, Boston (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Boyer, C.P., Galicki, K.: Einstein manifolds and contact geometry. Proc. Amer. Math. Soc. 129, 2419–2430 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Boyer, C.P., Galicki, K.: Sasakian Geometry. Oxford University Press, Oxford (2008)zbMATHGoogle Scholar
  7. 7.
    Cao, H.D.: Recent progress on Ricci soliton. Adv. Lect. Math. 11, 1–38 (2009)ADSMathSciNetGoogle Scholar
  8. 8.
    Case, J., Shu, Y., Wei, G.: Rigidity of quasi-Einstein metrics. Diff. Geom. Appl. 29, 93–100 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Catino, G.: Generalized quasi-Einstein manifolds with harmonic Weyl tensor. Math. Z. 271, 751–756 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Catino, G., Mazzieri, L.: Gradient Einstein-solitons. arXiv:1201.6620
  11. 11.
    Ghosh, A.: Certain contact metrics as Ricci almost solitons. Results Math. 65, 81–94 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ghosh, A.: Quasi-Einstein contact metric manifolds, to appear Glasgow Math. J.Google Scholar
  13. 13.
    Huang, G., Wei, Y.: The classification of (m, ρ)-quasi-Einstein manifolds. Ann. Global Anal. Geom. 44, 269–282 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Myers, S.B.: Connections between differential geometry and topology. Duke Math. J. 1, 376–391 (1935)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Obata, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14, 333–340 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pigola, S., Rigoli, M., Rimoldi, M., Setti, A.: Ricci almost solitons. Ann. Scuola. Norm. Sup. Pisa. CL Sc. X(5), 757–799 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Sharma, R.: Certain results on K-contact and (k,μ)-contact manifolds. J. Geom. 89, 138–147 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Yano, K.: Integral formulas in Riemannian geometry. Marcel Dekker, New York (1970)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department Of MathematicsChandernagore CollegeChandannagarIndia

Personalised recommendations