Advertisement

Mathematical Physics, Analysis and Geometry

, Volume 17, Issue 3–4, pp 369–376 | Cite as

(m, ρ)-Quasi-Einstein Metrics in the Frame-Work of K-Contact Manifolds

  • Amalendu GhoshEmail author
Article

Abstract

The aim of this note is to prove that if a complete K-contact manifold M of dimension (2n + 1) admits a (m, ρ)-quasi-Einstein metric with m ≠ 1, then we prove that f is constant and M becomes compact, Einstein and Sasakian.

Keywords

Contact metric manifold K-contact manifold Generalized quasi-Einstein metric (m, ρ)-quasi-Einstein metric 

Mathematics Subject Classification (2010)

53C24 53C15 53C21 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barros, A., Ribeiro, E.Jr.: Some characterizations for compact almost Ricci solitons. Proc. Amer. Math. Soc. 140(3), 213–223 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barros, A., Ribeiro, E.Jr.: Characterizations and integral formulae for generalized m-quasi-Einstein metrics. Bull. Brazilian Math. Soc. 45, 324–341 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Besse, A.L.: Einstein manifolds. Springer, Berlin (1987)CrossRefzbMATHGoogle Scholar
  4. 4.
    Blair, D.E.: Riemannian geometry of contact and symplectic manifolds. Birkhauser, Boston (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Boyer, C.P., Galicki, K.: Einstein manifolds and contact geometry. Proc. Amer. Math. Soc. 129, 2419–2430 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Boyer, C.P., Galicki, K.: Sasakian Geometry. Oxford University Press, Oxford (2008)zbMATHGoogle Scholar
  7. 7.
    Cao, H.D.: Recent progress on Ricci soliton. Adv. Lect. Math. 11, 1–38 (2009)ADSMathSciNetGoogle Scholar
  8. 8.
    Case, J., Shu, Y., Wei, G.: Rigidity of quasi-Einstein metrics. Diff. Geom. Appl. 29, 93–100 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Catino, G.: Generalized quasi-Einstein manifolds with harmonic Weyl tensor. Math. Z. 271, 751–756 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Catino, G., Mazzieri, L.: Gradient Einstein-solitons. arXiv:1201.6620
  11. 11.
    Ghosh, A.: Certain contact metrics as Ricci almost solitons. Results Math. 65, 81–94 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ghosh, A.: Quasi-Einstein contact metric manifolds, to appear Glasgow Math. J.Google Scholar
  13. 13.
    Huang, G., Wei, Y.: The classification of (m, ρ)-quasi-Einstein manifolds. Ann. Global Anal. Geom. 44, 269–282 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Myers, S.B.: Connections between differential geometry and topology. Duke Math. J. 1, 376–391 (1935)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Obata, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14, 333–340 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pigola, S., Rigoli, M., Rimoldi, M., Setti, A.: Ricci almost solitons. Ann. Scuola. Norm. Sup. Pisa. CL Sc. X(5), 757–799 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Sharma, R.: Certain results on K-contact and (k,μ)-contact manifolds. J. Geom. 89, 138–147 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Yano, K.: Integral formulas in Riemannian geometry. Marcel Dekker, New York (1970)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department Of MathematicsChandernagore CollegeChandannagarIndia

Personalised recommendations