The Dual Stream Function Representation of an Ideal Steady Fluid Flow and its Local Geometric Structure

Article

Abstract

Using the methodology of Lie groups and Lie algebras we determine new symmetry and equivalence classes of the stationary three-dimensional Euler equations by introducing potential functions that are based on the so-called dual stream function representation of the steady state velocity field u(x, y, z) = ∇λ(x, y, z) × ∇μ(x, y, z), which itself can only be defined locally. In particular an infinite dimensional Lie algebra for Beltrami fields is gained. We show that this Lie algebra generates canonical transformations of a Hamiltonian flow for the dual pair of variables \(\lambda \) and \(\mu \). It enables us to make the classification of a two-dimensional Riemannian manifold \(M^{2}\) wherein \((\lambda ,\mu )\) presents the local coordinates of \(M^{2}\). Furthermore the local geometry of this manifold is explored in detail. As a result an infinite set of locally conserved currents and charges in the context of a conformal field theory is finally observed.

Keywords

Euler equations Dual stream function Symmetries Beltrami fields Equivalence transformation Shape classification 

Mathematics Subject Classifications (2010)

76F05 76F55 53B21 53B50 58J70 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge Univeristy Press, Cambridge (1967)Google Scholar
  2. 2.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)CrossRefMATHGoogle Scholar
  3. 3.
    Davidson, P.A.: Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, London (2004)Google Scholar
  4. 4.
    Constantin, P.: On the Euler equations of incompressible fluids. Bull A Math. Soc. 44(4), 603–621 (2007)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Etnyre, J., Ghrist, R.: Contact topology and hydrodynamics: I. Beltrami fields and the Seifert conjecture. Nonlinearity 13, 441–458 (2000)ADSCrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Arnold, V.I., Khesin, B.A.: Topological Methods in Hydrodynamics. Springer-Verlag, New York Berlin Heidelberg (1998)MATHGoogle Scholar
  7. 7.
    Arnold, V.I.: Sur la topologie des e’coulements stationnaires des fluides parfaits. C.R. Acad. Sci. Paris 261, 17–20 (1965)MathSciNetGoogle Scholar
  8. 8.
    Moffatt, H.K., Tsinober, A.: Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech. 24, 281–312 (1992)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    McLaughlin, D., Pironneau, O.: Some notes on periodic Beltrami fields in Cartesian geometry. J. Math. Phys. 32(3), 797–804 (1990)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Etnyre, J., Ghrist, G.: Generic hydrodynamic instability of curl eigenfields. arXiv:0306310 (2003)
  11. 11.
    Naso, A., Monchaux, R., Chavanis, P.H., Dubrulle, B.: Statistical mechanics of Beltrami flows in axisymmetric geometry: theory reexamined. Phys. Rev. E. 81, 066318 (2010)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer-Verlag, New York (1989)CrossRefGoogle Scholar
  13. 13.
    Dombre, T., Frisch, U., Green, J.M., He’non, M., Mehr, A., Soward, A.M.: Chaotic streamlines in the ABC flows. J. Fluid Mech. 167, 353–391 (1986)ADSCrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Amari, T., Boulbe, C., Boulmezaoud, T.Z.: Computing Beltrami fields. SIAM 31(5), 3217–3254 (2009)MATHMathSciNetGoogle Scholar
  15. 15.
    Pelz, R., Yakhot, V., Orszag, S.A., Shtilman, L., Levich, E.: Velocity-vorticity patterns in turbulent flow. Phys. Rev. Lett. 54, 2505–2509 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    Yakhot, V., Orszag, S.A., Yakhot, A., Panda, R., Frisch, U., Kraichnan, R.H.: Weak interactions and local order in strong turbulence. Num. Sim. Heat Transf. Turbul. 4, 17–58 (1987)Google Scholar
  17. 17.
    Tsinober, A., Levich, E.: On the nature of the three-dimensional coherent structures in turbulent flows. Phys. Lett. A 99, 321–324 (1983)ADSCrossRefGoogle Scholar
  18. 18.
    Brachet, M.E., Meneguzzi, M., Sulem, P.L.: Small-scale dynamics of high Reynolds-number two-dimensional turbulence. Phys. Rev. Lett. 57, 683–686 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    Moffat, H.K.: Magnetostatic equilibria and analogous Euler flows of arbitrary complex topology. J.Fluid Mech. 166, 359–378 (1986)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    Moffat, H.K.: Structure and stability of solutions of the Euler equations: a Lagrangian approach. Phil. Trans. Roy. Soc. London. Sr. A 333(N1631), 321–342 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    Yih, C.S.: Stream functions in three-dimensional flows. La Houlle Blanche 3, 445–450 (1957)MathSciNetGoogle Scholar
  22. 22.
    Reztsov, A.V., Mallinson, G.D.: Dual stream functions for \(3D\) swirling flows. In: Proceedings of 13th Australian Fluid Mechanics Conference, pp. 179–182. Melbourne (1998)Google Scholar
  23. 23.
    Zhenquan, L., Mallinson, G.D.: Dual stream function vizualization of flows fields dependent on two variables. Comput. Visual Sci. 9, 33–41 (2006)CrossRefGoogle Scholar
  24. 24.
    Beale, S.B.: Visualisation of three-dimensional flow fields using two stream functions. In: Proceedings of 10th International Symposium Transactions Phenomena (1979)Google Scholar
  25. 25.
    Greywall, M.S.: Streamwise computation of three-dimensional flows using two stream functions. J. Fluids Eng. 115, 233–238 (1993)CrossRefGoogle Scholar
  26. 26.
    Vekua, I.N.: Generalized Analytical Functions. Nauka, Moscow (1988)Google Scholar
  27. 27.
    Zeitunyan, R.K.: Theory of three-dimensional vorticity flows of ideal fluids. Inst. Pure Appl. Mech. Novosibirsk. Numer. Meth. Continuum Mech. 5, 71–101 (1977)Google Scholar
  28. 28.
    Keller, J.: A pair of stream fucntions for three-dimensional vortex flows. ZAMP 47, 821–836 (1996)ADSCrossRefMATHGoogle Scholar
  29. 29.
    Zaslavskii, G.M., Sagdeev, R.Z., Usikov, D.A., Chernikov, A.A.: Weak Chaos and Quasiregular Structures. Nauka, Moscow (2002)Google Scholar
  30. 30.
    Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1932)MATHGoogle Scholar
  31. 31.
    Graham, C.R.: Clebsch representation near points where velocity vanishes. Phys. Fluids 12(4), 744–746 (2000)ADSCrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Zakharov, V.E., Kuznetsov, E.A.: Hamiltonian formalism for nonlinear waves. Phisics-Uspekhi 40(11), 1087–1116 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    Kuznetsov, E.A.: Mixed Lagrangian-Euler description of vortical flows for ideal and viscous fluids. J. Fluid Mech. 600, 167–180 (2008)ADSCrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Fadeev, L.D.: Some connections on the many-dimensional solitons. Lett. Math. Phys. 289, 1–4 (1976)Google Scholar
  35. 35.
    Ovsynnikov, L.V.: The Clebsch equations and new models of vortex fluid motions. In: Abstract of the 9th Confrenece of Pura and Applied Mechanics. 2, 140 (2006)Google Scholar
  36. 36.
    Ovsynnikov, L.V.: Group Analysis of Differential Equations. Nauka, Moscow (1978)Google Scholar
  37. 37.
    Dubrovin, B.A., Fomenko, T.A., Novikov, S.P.: Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups, and Fields. Springer-Verlag, New York Berlin Heidelberg (1984)CrossRefGoogle Scholar
  38. 38.
    Sabitov, I.K.h.: Isometric transformations of a surface inducing conformal maps of the surface into itself. Sb. Math. 189(1), 119–132 (1998)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Megrabov, A.G.: Group spliting and Lax representation. Dokl. Math. 67(3), 335–349 (2003)Google Scholar
  40. 40.
    Meleshko, S.V.: Homogeneous autonomic systems with three independent variables. J. Appl. Math. Mech. 58, 857–863 (1994)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Schottenloher, M.: A mathematical introduction to conformal field theory. In: Lecture Notes in Physics, p. 759. Springer, Berlin Heidelberg (2008)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Institute of Computational TechnologiesRussian Academy of ScienceNovosibirskRussia

Personalised recommendations