Skip to main content
Log in

Spectrum of Lebesgue Measure Zero for Jacobi Matrices of Quasicrystals

Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We study one-dimensional random Jacobi operators corresponding to strictly ergodic dynamical systems. We characterize the spectrum of these operators via non-uniformity of the transfer matrices and vanishing of the Lyapunov exponent. For aperiodic, minimal subshifts satisfying the so-called Boshernitzan condition this gives that the spectrum is supported on a Cantor set with Lebesgue measure zero. This generalizes earlier results for Schrödinger operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article  ADS  Google Scholar 

  2. Bellissard, J., Bovier, A., Ghez, J.-M.: Spectral properties of a tight binding Hamiltonian with period doubling potential. Commun. Math. Phys. 135(2), 379–399 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bellissard, J., Iochum, B., Scoppola, E., Testard, D.: Spectral properties of one-dimensional quasi-crystals. Commun. Math. Phys. 125(3), 527–543 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Besbes, A., Boshernitzan, M., Lenz, D.: Delone sets with finite local complexity: linear repetitivity versus positivity of weights. Discrete Comput. Geom. 49(2), 335–347 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boshernitzan, M.: A unique ergodicity of minimal symbolic flows with linear block growth. J. Analyse Math. 44, 77–96 (1984/85)

    Article  MathSciNet  Google Scholar 

  6. Boshernitzan, M.D.: A condition for unique ergodicity of minimal symbolic flows. Ergodic Theor. Dynam. Syst. 12(3), 425–428 (1992)

    MathSciNet  MATH  Google Scholar 

  7. Bovier, A., Ghez, J.-M.: Spectral properties of one-dimensional Schrödinger operators with potentials generated by substitutions. Commun. Math. Phys. 158(1), 45–66 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Carmona, R., Klein, A., Martinelli, F.: Anderson localization for Bernoulli and other singular potentials. Commun. Math. Phys. 108(1), 41–66 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Carmona, R., Lacroix, J.: Spectral Theory of Random Schrödinger Operators. Birkhäuser Boston Inc., Boston, MA (1990)

  10. Dahl, J.M.: The spectrum of the off-diagonal Fibonacci operator. PhD thesis. Rice University, 2010

  11. Damanik, D.: Singular continuous spectrum for a class of substitution Hamiltonians. Lett. Math. Phys. 46(4), 303–311 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Damanik, D., Gorodetski, A.: The spectrum and the spectral type of the off-diagonal Fibonacci operator. arXiv:0807.3024, 2008

  13. Damanik, D., Killip, R., Lenz, D.: Uniform spectral properties of one-dimensional quasicrystals. III. α-continuity. Commun. Math. Phys. 212(1), 191–204 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Damanik, D., Lenz, D.: Uniform spectral properties of one-dimensional quasicrystals. I. Absence of eigenvalues. Commun. Math. Phys. 207(3), 687–696 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Damanik, D., Lenz, D.: Uniform spectral properties of one-dimensional quasicrystals. II. The Lyapunov exponent. Lett. Math. Phys. 50(4), 245–257 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Damanik, D., Lenz, D.: A condition of Boshernitzan and uniform convergence in the multiplicative ergodic theorem. Duke Math. J. 133(1), 95–123 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Damanik, D., Lenz, D.: Zero-measure Cantor spectrum for Schrödinger operators with low-complexity potentials. J. Math. Pures Appl. (9). 85(5), 671–686 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Eisner, T., Farkas, B., Haase, M., Nagel, R.: Ergodic theory—an operator theoretic approach. In: Manuscript 12th International Internet Seminar. http://isem.mathematik.tu-darmstadt.de/isem, 18.01.2013, 2009

  19. Fröhlich, J., Martinelli, F., Scoppola, E., Spencer, T.: Constructive proof of localization in the Anderson tight binding model. Commun. Math. Phys. 101(1), 21–46 (1985)

    Article  ADS  MATH  Google Scholar 

  20. Furman, A.: On the multiplicative ergodic theorem for uniquely ergodic systems. Ann. Inst. H. Poincaré Probab. Stat. 33(6), 797–815 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Janas, J., Naboko, S., Stolz, G.: Decay bounds on eigenfunctions and the singular spectrum of unbounded Jacobi matrices. Int. Math. Res. Not. IMRN 4(4), 736–764 (2009)

    Google Scholar 

  22. Katznelson, Y., Weiss, B.: A simple proof of some ergodic theorems. Israel J. Math.42(4), 291–296 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kirsch, W. An invitation to random Schrödinger operators. In: Random Schrödinger Operators, vol. 25 of Panor. Synthèses, pp. 1–119. With an appendix by Frédéric Klopp. Soc. Math. France, (2008)

  24. Kohmoto, M., Kadanoff, L.P., Tang, C.: Localization problem in one dimension: mapping and escape. Phys. Rev. Lett. 50(23), 1870–1872 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  25. Kotani, S.: Jacobi matrices with random potentials taking finitely many values. Rev. Math. Phys. 1(1), 129–133 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Last, Y., Simon, B.: Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators. Invent. Math. 135(2), 329–367 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Lenz, D.: Random operators and crossed products. Math. Phys. Anal. Geom. 2(2), 197–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lenz, D.: Singular spectrum of Lebesgue measure zero for one-dimensional quasicrystals. Commun. Math. Phys. 227(1), 119–130 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Lenz, D.: Existence of non-uniform cocycles on uniquely ergodic systems. Ann. Inst. H. Poincaré Probab. Stat. 40(2), 197–206 (2004)

    MathSciNet  ADS  MATH  Google Scholar 

  30. Marin, L.: On- and off-diagonal Sturmian operators: dynamic and spectral dimension. Rev. Math. Phys. 24(5), 1250011, 23 (2012)

    Article  MathSciNet  Google Scholar 

  31. Ostlund, S., Pandit, R., Rand, D., Schellnhuber, H.J., Siggia, E.D.: One-dimensional Schrödinger equation with an almost periodic potential. Phys. Rev. Lett. 50, 1873–1876 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  32. Remling, C.: The absolutely continuous spectrum of Jacobi matrices. Ann. Math. (2). 174(1), 125–171 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984)

    Article  ADS  Google Scholar 

  34. Sütoő, A.: The spectrum of a quasiperiodic Schrödinger operator. Commun. Math. Phys. 111(3), 409–415 (1987)

    Article  ADS  Google Scholar 

  35. Sütoő, A.: Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian. J. Stat. Phys. 56(3-4), 525–531 (1989)

    Article  ADS  Google Scholar 

  36. Teschl, G.: Jacobi Operators and Completely Integrable Nonlinear Lattices, vol. 72. American Mathematical Society, Providence, RI (2000)

  37. Walters, P.: An Introduction to Ergodic Theory, vol. 79. Springer-Verlag, New York (1982)

  38. Yessen, W.N.: On the spectrum of 1D quantum ising quasicrystal. arXiv:1110.6894, (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Beckus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beckus, S., Pogorzelski, F. Spectrum of Lebesgue Measure Zero for Jacobi Matrices of Quasicrystals. Math Phys Anal Geom 16, 289–308 (2013). https://doi.org/10.1007/s11040-013-9131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11040-013-9131-4

Keywords

Mathematics Subject Classification (2010)

Navigation