Mathematical Physics, Analysis and Geometry

, Volume 16, Issue 2, pp 137–170 | Cite as

Topological Invariants of Edge States for Periodic Two-Dimensional Models

  • Julio Cesar Avila
  • Hermann Schulz-Baldes
  • Carlos Villegas-Blas


Transfer matrix methods and intersection theory are used to calculate the bands of edge states for a wide class of periodic two-dimensional tight-binding models including a sublattice and spin degree of freedom. This allows to define topological invariants by considering the associated Bott–Maslov indices which can be easily calculated numerically. For time-reversal symmetric systems in the symplectic universality class this leads to a \({\mathbb Z}_2\)-invariant for the edge states. It is shown that the edge state invariants are related to Chern numbers of the bulk systems and also to (spin) edge currents, in the spirit of the theory of topological insulators.


Edge states Bloch theory Topological invariants 

Mathematics Subject Classifications (2010)

81V70 19L10 82B20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ando, T.: Numerical study of symmetry effects on localization in two dimensions. Phys. Rev. B40, 5325–5339 (1989)MathSciNetADSGoogle Scholar
  2. 2.
    Elbau, P., Graf, G.-M.: Equality of bulk and edge Hall conductance revisited. Commun. Math. Phys. 229, 415–432 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Fröhlich, J., Studer, U.M., Thiran, E.: Quantum theory of large systems of non-relativistic matter. In: Les Houches Lectures 1994. Elsevier, New York (1996)Google Scholar
  4. 4.
    Fujita, M., Wakabayashi, K., Nakada, K., Kusakabe, K.: Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 65, 1920–1923 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Graf, G.M., Porta, M.: Bulk-edge correspondence for two-dimensional topological insulators. arXiv:1207.5989
  6. 6.
    Halperin, B.I.: Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Hatsugai, Y.: The Chern number and edge states in the integer quantum hall effect. Phys. Rev. Lett. 71, 3697–3700 (1993)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Hatsugai, Y., Fukui, T., Aoki, H.: Topological analysis of the quantum Hall effect in graphene: Dirac-Fermi transition across van Hove singularities and edge versus bulk quantum numbers. Phys. Rev. B74, 205414–205430 (2006)ADSGoogle Scholar
  9. 9.
    Kane, C.L., Mele, E.J.: \({\mathbb Z}_2\) topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802–145805 (2005)ADSGoogle Scholar
  10. 10.
    Kellendonk, J., Richter, T., Schulz-Baldes, H.: Edge current channels and Chern numbers in the integer quantum Hall effect. Rev. Math. Phys. 14, 87–119 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Krein, M.G.: Principles of the theory of λ-zones of stability of a canonical system of linear differential equations with periodic coefficients. In: Memory of A.A. Andronov, pp. 413–498. Izdat. Akad. Nauk SSSR, Moscow (1955) (English Transl.: Krein, M.G.: Topics in Differential and Integral Equations and Operator Theory. Birkhäuser, Boston (1983))Google Scholar
  12. 12.
    Kuchment, P.: Quantum Graphs II: some spectral properties of quantum and combinatorial graphs. J. Phys. A38, 4887–4900 (2005)MathSciNetADSGoogle Scholar
  13. 13.
    Nishino, S., Goda, M., Kusakabe, K.: Flat bands of a tight-binding electronic system with hexagonal structure. J. Phys. Soc. Jpn. 72, 2015–2023 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Prodan, E.: Robustness of the spin-Chern number. Phys. Rev. B80, 125327–125333 (2009)ADSGoogle Scholar
  15. 15.
    Sadel, C., Schulz-Baldes, H.: Random Dirac operators with time reversal symmetry. Commun. Math. Phys. 295, 209–242 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Schulz-Baldes, H.: Rotation numbers for Jacobi matrices with matrix entries. Math. Phys. Electron. J. 13, 40 pp. (2007)MathSciNetGoogle Scholar
  17. 17.
    Schulz-Baldes, H.: Geometry of Weyl theory for Jacobi matrices with matrix entries. J. Anal. Math. 110, 129–165 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Schulz-Baldes, H., Kellendonk, J., Richter, T.: Edge versus Bulk currents in the integer quantum hall effect. J. Phys. A33, L27–L32 (2000)MathSciNetADSGoogle Scholar
  19. 19.
    Sheng, D.N., Weng, Z.Y., Sheng, L., Haldane, F.D.M.: Quantum spin-hall effect and topologically invariant Chern numbers. Phys. Rev. Lett. 97, 036808–036811 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Shockley, W.: On the surface states associated with a periodic potential. Phys. Rev. 56, 317–323 (1939)ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Tamm, I.: Über eine mögliche Art der Elektronenbindung an Kristalloberflächen. Z. Phys. Sov. 76, 849–850 (1932)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Julio Cesar Avila
    • 1
  • Hermann Schulz-Baldes
    • 1
    • 2
  • Carlos Villegas-Blas
    • 1
  1. 1.UNAMInstituto de MatematicasCuernavacaMexico
  2. 2.Department MathematikUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations