Mathematical Physics, Analysis and Geometry

, Volume 15, Issue 1, pp 61–83

Grand Canonical Ensembles in General Relativity

Article

Abstract

We develop a formalism for general relativistic, grand canonical ensembles in space-times with timelike Killing fields. Using that, we derive ideal gas laws, and show how they depend on the geometry of the particular space-times. A systematic method for calculating Newtonian limits is given for a class of these space-times, which is illustrated for Kerr space-time. In addition, we prove uniqueness of the infinite volume Gibbs measure, and absence of phase transitions for a class of interaction potentials in anti-de Sitter space.

Keywords

Relativistic Gibbs state Fermi coordinates  Grand canonical ensemble Ideal gas Anti-de Sitter space De-Sitter space Einstein static universe Kerr space-time 

Mathematics Subject Classification (2010)

82B21 83C15 83F05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Röckner, M.: Stochastic analysis on configuration spaces: basic ideas and recent results, New directions in Dirichlet forms, 157–231. AMS/IP Stud. Adv. Math., 8. Amer. Math. Soc., Providence, RI (1998). arXiv:math/9803162v1 [math.PR]
  2. 2.
    Albeverio, P., Kondratiev, Y., Röckner, M.: Analysis and geometry on configuration spaces: The Gibbsian case. J. Funct. Anal. 157, 242–291 (1998)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Kuna, T.: Studies in Configuration Space Analysis and Applications. Bonner Math. Schr. 324, Univ. Bonn, Bonn, 1999, PhD dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 187 pp. MR1932768 (2003k:82058) (1999)Google Scholar
  4. 4.
    Kondratiev, Y., Pasurek, T., Röckner, M.: Gibbs measures of continuous systems: An analytic approach (2009). www.math.uni-bielefeld.de/sfb701/preprints/sfb09019.pdf
  5. 5.
    Klein, D., Collas, P.: Timelike Killing fields and relativistic statistical mechanics, Class. Quantum Grav. 26, 045018 (2009). (16 pp) arXiv:0810.1776v2 [gr-qc]MathSciNetCrossRefGoogle Scholar
  6. 6.
    Montesinos, M., Rovelli, C.: Statistical mechanics of generally covariant quantum theories: A Boltzmann-like approach. Class. Quantum Gravity 18, 555–569 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman, San Francisco (1973)Google Scholar
  8. 8.
    Walker, A.G.: Note on relativistic mechanics. Proc. Edinb. Math. Soc. 4, 170–174 (1935)CrossRefGoogle Scholar
  9. 9.
    Synge, J.L.: Relativity: The General Theory. North Holland, Amsterdam (1960)MATHGoogle Scholar
  10. 10.
    Collas, P., Klein, D.: A Simple Criterion for Nonrotating Reference Frames. Gen. Relativ. Gravit. 36, 1493–1499 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Klein, D., Collas, P.: Exact Fermi coordinates for a class of space-times. J. Math. Phys. 51, 022501 (2010). (10 pp) doi:10.1063/1.3298684, arXiv:0912.2779v1 [math-ph]MathSciNetCrossRefGoogle Scholar
  12. 12.
    O’Neill, B.: Semi-Riemannian geometry with applications to relativity, p. 200. Academic Press, New York (1983)MATHGoogle Scholar
  13. 13.
    Klein, D., Collas, P.: General transformation formulas for Fermi–Walker Coordinates. Class. Quantum Gravity 25 145019 (2008). (17pp) doi:10.1088/0264-9381/25/14/145019, [gr-qc] arxiv.org/abs/0712.3838v4 MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Bolós, V.: Intrinsic definitions of “relative velocity” in general relativity. Commun. Math. Phys. 273, 217–236 (2007)ADSMATHCrossRefGoogle Scholar
  15. 15.
    Klein, D., Randles, E.: Fermi coordinates, simultaneity, and expanding space in Robertson–Walker cosmologies. Ann. Henri Poincaré 12, 303–28 (2011). doi:10.1007/s00023-011-0080-9 MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Bolós, V., Klein, D.: Relative velocities for radial motion in expanding Robertson–Walker spacetimes. Archive: arXiv:1106.3859v1 [gr-qc]
  17. 17.
    Collas, P., Klein, D.: A Statistical mechanical problem in Schwarzschild space-time. Gen. Relativ. Gravit. 39, 737–755 (2007). doi:10.1007/s10714-007-0416-4 MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Tolman, R.C.: Relativity, thermodynamics, and cosmology, pp. 318–9. Clarendon, Oxford (1934)Google Scholar
  19. 19.
    Horwitz, L.P., Schieve, W.C., Piron, C.: Gibbs ensembles in relativistic classical and quantum mechanics. Ann. Phys., NY 137, 306–340 (1981)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Erdélyi, A.: Higher transcendental functions, vol. II, p. 23. McGraw-Hill, New York (1953)MATHGoogle Scholar
  21. 21.
    Parthasarathy, K.R.: Probability measures on metric spaces, probability and mathematical statistics. Academic Press, New York and London (1967)Google Scholar
  22. 22.
    Böhmer, C.G., Harko, T.: Does the cosmological constant imply the existence of a minimum mass? Phys. Lett. B 630, 73–77 (2005). arXiv:gr-qc/0509110 ADSGoogle Scholar
  23. 23.
    Bardeen, J.M., Press, W.H., Teukolsky, S.A.: Rotating black holes: Locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347–369 (1972)ADSCrossRefGoogle Scholar
  24. 24.
    Bonnor, W., Steadman, B.: The gravitomagnetic clock effect. Class. Quantum Gravity 16, 1853–1861 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    Klein, D., Yang, W.S.: Absence of phase transitions for continuum models of dimension d > 1. J. Math. Phys. 29, 1130–1133 (1988)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Mathematics and Interdisciplinary Research Institute for the SciencesCalifornia State University NorthridgeNorthridgeUSA
  2. 2.Department of MathematicsTemple UniversityPhiladelphiaUSA

Personalised recommendations