Advertisement

Mathematical Physics, Analysis and Geometry

, Volume 13, Issue 3, pp 255–273 | Cite as

Lagrangian Curves on Spectral Curves of Monopoles

  • Brendan Guilfoyle
  • Madeeha Khalid
  • José J. Ramón Marí
Article
  • 57 Downloads

Abstract

We study Lagrangian points on smooth holomorphic curves in \({\rm T}{\mathbb P}^1\) equipped with a natural neutral Kähler structure, and prove that they must form real curves. By virtue of the identification of \({\rm T}{\mathbb P}^1\) with the space \({\mathbb L}({\mathbb E}^3)\) of oriented affine lines in Euclidean 3-space \({\mathbb E}^3\), these Lagrangian curves give rise to ruled surfaces in \({\mathbb E}^3\), which we prove have zero Gauss curvature. Each ruled surface is shown to be the tangent lines to a curve in \({\mathbb E}^3\), called the edge of regression of the ruled surface. We give an alternative characterization of these curves as the points in \({\mathbb E}^3\) where the number of oriented lines in the complex curve Σ that pass through the point is less than the degree of Σ. We then apply these results to the spectral curves of certain monopoles and construct the ruled surfaces and edges of regression generated by the Lagrangian curves.

Keywords

Neutral Kaehler structure Monopoles Lagrangian curves 

Mathematics Subject Classifications (2010)

Primary—53A25; Secondary—81T13 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)zbMATHGoogle Scholar
  2. 2.
    Guilfoyle, B., Klingenberg, W.: Generalised surfaces in ℝ3. Math. Proc. R. Ir. Acad. 104A, 199–209 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Guilfoyle, B., Klingenberg, W.: An indefinite Kähler metric on the space of oriented lines. J. Lond. Math. Soc. 72, 497–509 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Guilfoyle, B., Klingenberg, W.: On Weingarten surfaces in Euclidean and Lorentzian 3-space. Differential Geom. Appl. 28, 454–468 (2010)zbMATHCrossRefGoogle Scholar
  5. 5.
    Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics. Springer, New York (1977)Google Scholar
  6. 6.
    Hitchin, N.J.: Monopoles and geodesics. Commun. Math. Phys. 83, 579–602 (1982)zbMATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Hitchin, N.J.: Monopoles, minimal surfaces and algebraic curves. NATO Advanced Study Institute, University of Montreal Press, Quebec (1987)zbMATHGoogle Scholar
  8. 8.
    Houghton, C.J., Manton, N.S., Ramão, N.M.: On the constraints defining BPS monopoles. Commun. Math. Phys. 212, 219–243 (2000)zbMATHCrossRefADSGoogle Scholar
  9. 9.
    Kreyszig, E.: Differential Geometry. Dover Publications, New York (1991)Google Scholar
  10. 10.
    Manton, N.S., Sutcliffe, P.: Topological Solitons. Cambridge University Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  11. 11.
    Salvai, M.: On the geometry of the space of oriented lines in Euclidean space. Manuscr. Math. 118, 181–189 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Small, A.: On algebraic minimal surfaces in ℝ3 deriving from charge 2 monopole spectral curves. Int. J. Math. 16, 173–180 (2005)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Brendan Guilfoyle
    • 1
  • Madeeha Khalid
    • 1
  • José J. Ramón Marí
    • 2
  1. 1.Department of MathematicsInstitute of Technology, TraleeClashIreland
  2. 2.IT Tralee Research InstituteInstitute of Technology, TraleeClashIreland

Personalised recommendations