Spin Calogero Particles and Bispectral Solutions of the Matrix KP Hierarchy

Article

Abstract

Pairs of n×n matrices whose commutator differ from the identity by a matrix of rank r are used to construct bispectral differential operators with r×r matrix coefficients satisfying the Lax equations of the Matrix KP hierarchy. Moreover, the bispectral involution on these operators has dynamical significance for the spin Calogero particles system whose phase space such pairs represent. In the case r = 1, this reproduces well-known results of Wilson and others from the 1990’s relating (spinless) Calogero-Moser systems to the bispectrality of (scalar) differential operators.

Keywords

Bispectrality Integrable systems Non-commutative KP hierarchy Spin generalized Calogero-Moser particle system 

Mathematics Subject Classifications (2000)

Primary 37K10 Secondary 15A24 34L99 37J35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Airault, H., McKean, H.P., Moser, J.: Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. Comm. Pure Appl. Math. 30(1), 95–148 (1977)MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Ben-Zvi, D., Nevins, T.: Flows of Calogero-Moser systems. Int. Math. Res. Not. IMRN :Art. ID rnm105 38(23), (2007)Google Scholar
  3. 3.
    Berest, Y., Wilson, G.: Ideal classes of the Weyl algebra and noncommutative projective geometry. Int. Math. Res. Not. 2002(26), 1347–1396 (2002) (with an appendix by Michel Van den Bergh)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bergvelt, M., ten Kroode, F.: Partitions, vertex operator constructions and multi-component KP equations. Pacific J. Math. 171(1), 23–88 (1995)MATHMathSciNetGoogle Scholar
  5. 5.
    Boyallian, C., Liberati, J.I.: Matrix-valued bispectral operators and quasideterminants. J. Phys. A Math. Theor. 41, 365209 (2008)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Castro, M.M., Grünbaum, F.A.: The algebra of differential operators associated to a family of matrix-valued orthogonal polynomials: five instructive examples. Int. Math. Res. Not., pages Art. ID 47602 33 (2006)Google Scholar
  7. 7.
    Chalub, F.A.C.C., Zubelli, J.P.: Matrix bispectrality and Huygens’ principle for Dirac operators. In: Partial Differential Equations and Inverse Problems of Contemp. Math., vol. 362, pp. 89–112. American Mathematical Society, Providence (2004)Google Scholar
  8. 8.
    Dimakis, A., Müller-Hoissen, F.: With a Cole-Hopf transformation to solutions of the noncommutative KP hierarchy in terms of Wronski matrices. J. Phys. A 40(17), F321–F329 (2007)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Duistermaat, J.J., Grünbaum, F.A.: Differential equations in the spectral parameter. Comm. Math. Phys. 103(2), 177–240 (1986)MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Durán, A.J., Grünbaum, F.A.: Structural formulas for orthogonal matrix polynomials satisfying second-order differential equations. I. Constr. Approx. 22(2), 255–271 (2005)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Etingof, P., Varchenko, A.: Traces of intertwiners for quantum groups and difference equations. I. Duke Math. J. 104(3), 391–432 (2000)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Etingof, P., Schiffmann, O., Varchenko, A.: Traces of intertwiners for quantum groups and difference equations. Lett. Math. Phys. 62(2), 143–158 (2002)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Fock, V., Gorsky, A., Nekrasov, N., Rubtsov, V.: Duality in integrable systems and gauge theories. J. High Energy Phys. Paper 28, 40(7) (2000)Google Scholar
  14. 14.
    Gekhtman, M., Kasman, A.: On KP generators and the geometry of the HBDE. J. Geom. Phys. 56(2), 282–309 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Gibbons, J., Hermsen, T.: A generalisation of the Calogero-Moser system. Phys. D 11(3), 337–348 (1984)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Grünbaum, F.A., Iliev, P.: A noncommutative version of the bispectral problem. J. Comput. Appl. Math. 161(1), 99–118 (2003)MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Haine, L.: KP trigonometric solitons and an adelic flag manifold. SIGMA Symmetry Integrability Geom. Methods Appl. 3:Paper 015, 15 pp. (2007) (electronic)Google Scholar
  18. 18.
    Harnad, J., Kasman, A. (eds.): The bispectral problem, volume 14 of CRM Proceedings & Lecture Notes. American Mathematical Society, Providence, RI, 1998. Papers from the CRM Workshop held at the Université de Montréal, Montreal, PQ (1997)Google Scholar
  19. 19.
    Kasman, A.: Bispectral KP solutions and linearization of Calogero-Moser particle systems. Comm. Math. Phys. 172(2), 427–448 (1995)MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Kasman, A.: The bispectral involution as a linearizing map. In: Calogero-Moser-Sutherland Models (Montréal, QC, 1997), CRM Series in Mathematical Physics, pp. 221–229. Springer, New York (2000)Google Scholar
  21. 21.
    Kasman, A.: On the quantization of a self-dual integrable system. J. Phys. A 34(32), 6307–6312 (2001)MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Kazhdan, D., Kostant, B., Sternberg, S.: Hamiltonian group actions and dynamical systems of Calogero type. Comm. Pure Appl. Math. 31(4), 481–507 (1978)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Kričever, I.M.: On the rational solutions of the Zaharov-Šabat equations and completely integrable systems of N particles on the line. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 84, 117–130, 312, 318 (1979) (Boundary value problems of mathematical physics and related questions in the theory of functions, 11)MathSciNetGoogle Scholar
  24. 24.
    Krichever, I.M., Babelon, O., Billey, E., Talon, M.: Spin generalization of the Calogero-Moser system and the matrix KP equation. In: Topics in Topology and Mathematical Physics, vol. 170 of Amer. Math. Soc. Transl. Ser. vol. 2, pp. 83–119. American Mathematical Society, Providence (1995)Google Scholar
  25. 25.
    Polychronakos, A.P.: The physics and mathematics of Calogero particles. J. Phys. A 39(41), 12793–12845 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Sakhnovich, A., Zubelli, J.P.: Bundle bispectrality for matrix differential equations. Integr. Equ. Oper. Theory 41(4), 472–496 (2001)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Sato, M., Sato, Y.: Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold. In: Nonlinear Partial Differential Equations in Applied Science (Tokyo, 1982), pp. 259–271. North-Holland, Amsterdam (1983)CrossRefGoogle Scholar
  28. 28.
    Segal, G., Wilson, G.: Loop groups and equations of KdV type. Inst. Hautes Études Sci. Publ. Math. 61, 5–65 (1985)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Shiota, T.: Calogero-Moser hierarchy and KP hierarchy. J. Math. Phys. 35(11), 5844–5849 (1994)MATHCrossRefADSMathSciNetGoogle Scholar
  30. 30.
    van Diejen, J.F., Vinet, L. (eds.): Calogero-Moser-Sutherland Models. CRM Series in Mathematical Physics, New York. Springer, New York (2000)Google Scholar
  31. 31.
    Wilson, G.: Bispectral commutative ordinary differential operators. J. Reine Angew. Math. 442, 177–204 (1993)MATHMathSciNetGoogle Scholar
  32. 32.
    Wilson, G.: Collisions of Calogero-Moser particles and an adelic Grassmannian. Invent. Math. 133(1), 1–41 (1998) (with an appendix by Macdonald, I.G.)MATHCrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Wilson, G.: The complex Calogero-Moser and KP systems. In: Calogero-Moser-Sutherland Models (Montréal, QC, 1997), CRM Series in Mathematical Physics, pp. 539–548. Springer, New York (2000)Google Scholar
  34. 34.
    Zubelli, J.P.: Differential equations in the spectral parameter for matrix differential operators. Phys. D 43(2–3), 269–287 (1990)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Maarten Bergvelt
    • 1
  • Michael Gekhtman
    • 2
  • Alex Kasman
    • 3
  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA
  2. 2.Department of MathematicsUniversity of Notre DameNotre DameUSA
  3. 3.Department of MathematicsCollege of CharlestonCharlestonUSA

Personalised recommendations