Mathematical Physics, Analysis and Geometry

, Volume 12, Issue 1, pp 19–45 | Cite as

Heisenberg-Integrable Spin Systems

  • Robin Steinigeweg
  • Heinz-Jürgen Schmidt


We investigate certain classes of integrable classical or quantum spin systems. The first class is characterized by the recursively defined property P saying that the spin system consists of a single spin or can be decomposed into two uniformly coupled or disjoint subsystems with property P. For these systems the time evolution can be explicitly calculated. The second class consists of spin systems where all non-zero coupling constants have the same strength (spin graphs) possessing N − 1 independent, commuting constants of motion of Heisenberg type. These systems are shown to have the above property P and can be characterized as spin graphs not containing chains of length four as vertex-induced sub-graphs. We completely enumerate and characterize all spin graphs up to N = 5 spins. Applications to the construction of symplectic numerical integrators for non-integrable spin systems are briefly discussed.


Completely integrable systems Heisenberg spin systems 

Mathematics Subject Classifications (2000)

70 H 06 37 J 35 81 Q 05 94 C 15 82 D 40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Magyari, E., Thomas, H., Weber, R., Kaufman, C., Müller, G.: Integrable and nonintegrable classical spin clusters: integrability criteria and analytic structure of invariants. Z. Phys. B 65, 363 (1987)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Srivastava, N., Kaufman, C., Müller, G., Weber, R., Thomas, H.: Integrable and nonintegrable classical spin clusters: trajectories and geometric structure of invariants. Z. Phys. B 70, 251 (1988)ADSMathSciNetGoogle Scholar
  3. 3.
    Santos, L.F.: Integrability of a disordered Heisenberg spin-1/2 chain. J. Phys. A, Math. Gen. 37, 4723 (2004)zbMATHCrossRefADSGoogle Scholar
  4. 4.
    Finkel, F., Gonzáles-López, A.: Title: global properties of the spectrum of the Haldane-Shastry spin chain. Phys. Rev. B 72, 174411 (2005)CrossRefADSGoogle Scholar
  5. 5.
    Casati, G., Ford, J., Vivaldi, F., Visscher, W.M.: One-dimensional classical many-body system having a normal thermal-conductivity. Phys. Rev. Lett. 52, 1861 (1984)CrossRefADSGoogle Scholar
  6. 6.
    Li, B., Casati, G., Wang, J., Prosen, T.: Fourier law in the alternate-mass hard-core potential chain. Phys. Rev. Lett. 92, 254301 (2004)CrossRefADSGoogle Scholar
  7. 7.
    Steinigeweg, R., Gemmer, J., Michel, M.: Normal-transport behavior in finite one-dimensional chaotic quantum systems. Europhys. Lett. 75, 406 (2006)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Gatteschi, D.: Molecular magnetism - a basis for new materials. Adv. Mater. 6, 635 (1994)CrossRefGoogle Scholar
  9. 9.
    Winpenny, R.E.P.: Families of high nuclearity cages. Comment. Inorg. Chem. 20, 233 (1999)CrossRefGoogle Scholar
  10. 10.
    Müller, A., Peters, F., Pope, M.T., Gatteschi, D.: Polyoxometalates: very large clusters-nanoscale magnets. Chem. Rev. 98, 239 (1998)CrossRefGoogle Scholar
  11. 11.
    Gatteschi, D., Sessoli, R., Cornia, A.: Single-molecule magnets based on iron(III) oxo clusters. Chem. Commun. 9, 725 (2000)CrossRefGoogle Scholar
  12. 12.
    Bencini, A., Gatteschi, D.: Electron Parametric Resonance of Exchange Coupled Systems. Springer, Berlin (1990)Google Scholar
  13. 13.
    Steinigeweg, R., Schmidt, H.-J.: Symplectic integrators for classical spin systems. Comput. Phys. Comm. 147(11), 853 (2006)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978)zbMATHGoogle Scholar
  15. 15.
    Skylanin, E.K.: In: Mo-Lin, G. (ed.) Quantum Groups and Quantum Integrable Systems, pp. 63–97. World Scientific, Singapore (1992)Google Scholar
  16. 16.
    Schröder, Ch.: Numerische Simulation zur Thermodynamik magnetischer Strukturen mittels deterministischer und stochastischer Wärmebadankopplung, Dissertation, Universität Osnabrück (1999)Google Scholar
  17. 17.
    Richter, J., Voigt, A.: The spin-1/2 Heisenberg star with frustration - numerical versus exact results. J. Phys. A, Math. Gen. 27, 1139 (1994)CrossRefADSGoogle Scholar
  18. 18.
    Richter, J., Voigt, A., Krüger, S.: The spin-1/2 Heisenberg star with frustration: the influence of the embedding medium. J. Phys. A, Math. Gen. 29, 825 (1996)zbMATHCrossRefADSGoogle Scholar
  19. 19.
    Ameduri, M., Gerganov, B., Klemm, R.A.: Classification of integrable clusters of classical Heisenberg spins. Preprint cond-mat/0502323 (2008)Google Scholar
  20. 20.
    Ballestros, A., Ragnisco, O.: A systematic construction of completely integrable Hamiltonians from coalgebras. J. Phys. A, Math. Gen. 31, 3791 (1998)CrossRefGoogle Scholar
  21. 21.
    Gaudin, M.: La Fonction d’Onde de Bethe. Mansson, Paris (1983)zbMATHGoogle Scholar
  22. 22.
    Calogero, F.: An exactly solvable Hamiltonian system - quantum version. Phys. Lett. A 36, 306 (1995)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, New York (1999)zbMATHGoogle Scholar
  24. 24.
    Abraham, R., Marsden, J.E., Ratiu, T.S.: Manifolds, Tensor Analysis, and Applications. Addison-Wesley, London (1983)zbMATHGoogle Scholar
  25. 25.
    Swamy, M.N.S., Thulasiraman, K.: Graphs, Networks, and Algorithms. Wiley, New York (1981)zbMATHGoogle Scholar
  26. 26.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1965)Google Scholar
  27. 27.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, New York (2002)zbMATHGoogle Scholar
  28. 28.
    Tsai, S., Krech, M., Landau, D.P.: Symplectic integration methods in molecular and spin dynamics simulations. Braz. J. Phys. 34(2A), 384 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Fachbereich PhysikUniversität OsnabrückOsnabrückGermany

Personalised recommendations