Mathematical Physics, Analysis and Geometry

, Volume 9, Issue 4, pp 335–352 | Cite as

Waveguides with Combined Dirichlet and Robin Boundary Conditions

  • P. Freitas
  • D. Krejčiřík


We consider the Laplacian in a curved two-dimensional strip of constant width squeezed between two curves, subject to Dirichlet boundary conditions on one of the curves and variable Robin boundary conditions on the other. We prove that, for certain types of Robin boundary conditions, the spectral threshold of the Laplacian is estimated from below by the lowest eigenvalue of the Laplacian in a Dirichlet-Robin annulus determined by the geometry of the strip. Moreover, we show that an appropriate combination of the geometric setting and boundary conditions leads to a Hardy-type inequality in infinite strips. As an application, we derive certain stability of the spectrum for the Laplacian in Dirichlet–Neumann strips along a class of curves of sign-changing curvature, improving in this way an initial result of Dittrich and Kříž (J. Phys. A, 35:L269–275, 2002).

Key words

Dirichlet and Robin boundary conditions eigenvalues in strips and annuli Hardy inequality Laplacian waveguides 

Mathematics Subject Classifications (2000)

35P15 58J50 81Q10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, R.A.: Sobolev Spaces. Academic, New York (1975)zbMATHGoogle Scholar
  2. 2.
    Ashbaugh, M.S., Exner, P.: Lower bounds to bound state energies in bent tubes. Phys. Lett. A 150(3–4), 183–186 (1990)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Borisov, D., Ekholm, T., Kovařík, H.: Spectrum of the magnetic Schrödinger operator in a waveguide with combined boundary conditions. Ann. Henri Poincaré 6, 327–342 (2005)zbMATHCrossRefGoogle Scholar
  4. 4.
    Chenaud, B., Duclos, P., Freitas, P., Krejčiřík, D.: Geometrically induced discrete spectrum in curved tubes. Differential Geom. Appl. 23(2), 95–105 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dancer, E.N., Daners, D.: Domain perturbation for elliptic equations subject to Robin boundary conditions. J. Differential Equations 138(1), 86–132 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Daners, D.: Robin boundary value problems on arbitrary domains. Trans. Amer. Math. Soc. 352(9), 4207–4236 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Daners, D.: Dirichlet problems on varying domains. J. Differential Equations 188, 591–624 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Davies, E.B., Parnovski, L.: Trapped modes in acoustic waveguides. Quart. J. Mech. Appl. Math. 51, 477–492 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dittrich J., Kříž, J.: Curved planar quantum wires with Dirichlet and Neumann boundary conditions. J. Phys. A 35, L269–275 (2002)zbMATHCrossRefADSGoogle Scholar
  10. 10.
    Duclos, P., Exner, P.: Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Math. Phys. 7, 73–102 (1995)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Ekholm, T., Kovařík, H.: Stability of the magnetic Schrödinger operator in a waveguide. Comm. Partial Differential Equations 30(4), 539–565 (2005)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Ekholm, T., Kovařík, H., Krejčiřík, D.: A Hardy inequality in twisted waveguides. Arch. Rational Mech. Anal. (preprint on math-ph/0512050 (2005)) (in press)Google Scholar
  13. 13.
    Evans, D.V., Levitin, M., Vassiliev, D.: Existence theorems for trapped modes. J. Fluid Mech. 261, 21–31 (1994)zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Exner, P., Freitas, P., Krejčiřík, D.: A lower bound to the spectral threshold in curved tubes. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 460(2052), 3457–3467 (2004)ADSGoogle Scholar
  15. 15.
    Exner, P., Krejčiřík, D.: Quantum waveguides with a lateral semitransparent barrier: spectral and scattering properties. J. Phys. A 32, 4475–4494 (1999)zbMATHCrossRefADSGoogle Scholar
  16. 16.
    Exner, P., Krejčiřík, D.: Waveguides coupled through a semitransparent barrier: a Birman–Schwinger analysis. Rev. Math. Phys. 13(3), 307–334 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Exner, P., Šeba, P.: Bound states in curved quantum waveguides. J. Math. Phys. 30, 2574–2580 (1989)zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Flucher, M.: Approximation of Dirichlet eigenvalues on domains with small holes. J. Math. Anal. Appl. 193(1), 169–199 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin Heidelberg New York (1983)zbMATHGoogle Scholar
  20. 20.
    Goldstone, J., Jaffe, R.L.: Bound states in twisting tubes. Phys. Rev. B 45, 14100–14107 (1992)CrossRefADSGoogle Scholar
  21. 21.
    Johnson, E.R., Levitin, M., Parnovski, L.: Existence of eigenvalues of a linear operator pencil in a curved waveguide – localized shelf waves on a curved coast. SIAM J. Math. Anal. 37(5), 1465–1481 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin Heidelberg New York (1966)zbMATHGoogle Scholar
  23. 23.
    Klingenberg, W.: A Course in Differential Geometry. Springer, Berlin Heidelberg New York (1978)zbMATHGoogle Scholar
  24. 24.
    Krejčiřík, D.: Hardy inequalities for strips on ruled surfaces. J. Inequal. Appl. 2006, Article ID 46409, 10 (2006)Google Scholar
  25. 25.
    Krejčiřík, D., Kříž, J.: On the spectrum of curved quantum waveguides. Publ. RIMS, Kyoto University 41(3), 757–791 (2005)MathSciNetGoogle Scholar
  26. 26.
    Kreyszig, E.: Differential Geometry. University of Toronto Press, Toronto (1959)zbMATHGoogle Scholar
  27. 27.
    Kuchment, P., Zeng, H.: Convergence of spectra of mesoscopic systems collapsing onto a graph. J. Math. Anal. Appl. 258, 671–700 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Kuchment, P., Zeng, H.: Asymptotics of spectra of Neumann Laplacians in thin domains. In: Advances in Differential Equations and Mathematical Physics, Birmingham, AL, 2002. Contemporary Mathematics, vol. 327, pp. 199–213. American Mathematical Society, Providence, RI (2003)Google Scholar
  29. 29.
    Londergan, J.T., Carini, J.P., Murdock, D.P.: Binding and Scattering in Two-dimensional Systems, LNP, vol. m60. Springer, Berlin Heidelberg New York (1999)Google Scholar
  30. 30.
    Olendski, O., Mikhailovska, L.: Localized-mode evolution in a curved planar waveguide with combined Dirichlet and Neumann boundary conditions. Phys. Rev. E 67, art. 056625 (2003)Google Scholar
  31. 31.
    Rauch, J., Taylor, M.: Potential and scattering theory on wildly perturbed domains. J. Funct. Anal. 18, 27–59 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Renger, W., Bulla, W.: Existence of bound states in quantum waveguides under weak conditions. Lett. Math. Phys. 35, 1–12 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Stollmann, P.: A convergence theorem for Dirichlet forms with applications to boundary value problems with varying domains. Math. Z. 219, 275–287 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Wang, Z.X., Guo, D.R.: Special Functions. World Scientific, Teaneck, NJ (1989)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Department of MathematicsFaculdade de Motricidade Humana (TU Lisbon) and Group of Mathematical Physics of the University of Lisbon, Complexo InterdisciplinarLisboaPortugal
  2. 2.Department of Theoretical PhysicsNuclear Physics Institute, Academy of SciencesŘež near PragueCzech Republic

Personalised recommendations