Earth, Moon, and Planets

, Volume 121, Issue 3, pp 105–125 | Cite as

A New Simple Model of Comets-Like Activity of Centaurs

  • M. Wesołowski
  • P. Gronkowski


Outbursts and variations of brightness are well known manifestations of the physical activity of the comets. Most cometary outbursts are recorded not very far from the Sun, where sublimation of water ice plays a major role in the activity of this celestial bodies. However, comets sometimes show physical activity far from the Sun, where the rate of water ice sublimation is small. Also a special kind of small bodies, i.e. centaurs sometimes show strong physical activity far from the Sun. The paper is based on the idea that the nuclei of centaurs may contain numerous cavities that are filled with gas under pressure and debris of cometary material. Numerical simulations were carried out for realistically assumed values of a wide range of physical parameters of centaurs. The obtained results are consistent with the observations of the physical activity of these celestial bodies.


Comets: general–comets: individual: the centaur 95P/Chiron The comet 29P/Schwassmann–Wachmann 



The authors would like to express their gratitude to the anonymous reviewer for very helpful comments that have considerably improved the manuscript. This work was supported by the Centre for Innovation and Transfer of Natural Sciences and Engineering Knowledge at the University of Rzeszów.


  1. J. Agarwal et al., Evidence of sub-surface energy storage in comet 67P from the outburst of 2016 July 03. MNRAS 469, S606 (2017)CrossRefGoogle Scholar
  2. C.F. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)Google Scholar
  3. W.R. Brown, J.X. Luu, Properties of model Comae around Kuiper Belt and Centaur objects. ICARUS 135, 415 (1998)ADSCrossRefGoogle Scholar
  4. S.J. Bus, M.F. A’Hearn, E. Bowell, S.A. Stern, (2060) Chiron: evidence for activity near aphelion. ICARUS 150, 94 (2001)ADSCrossRefGoogle Scholar
  5. M.T. Capria, A. Coradini, M.C. De Sanctis, R. Orosei, Chiron activity and thermal evolution. Astron. J. 119, 3112 (2000)ADSCrossRefGoogle Scholar
  6. M.R. Combi, V.M. Tenishev, M. Rubin, N. Fougere, T.I. Gombosi, Narrow dust jets in a diffuse gas coma: a natural product of small active regions on comets. Astrophys. J. 749, 29 (2012)ADSCrossRefGoogle Scholar
  7. H. Campins et al., The color temperature of (2060) Chiron: a warm and small nucleus. Astrophys. J. 108, 2318 (1994)Google Scholar
  8. J.J. Cowan, M.F. A’Hearn, Vaporization in Comets; outbursts from Comet Schwassmann–Wachmann 1. ICARUS 50, 53 (1982)ADSCrossRefGoogle Scholar
  9. J.F. Crifo, G.A. Loukianov, A.V. Rodionov, V.V. Zakharov, Direct Monte Carlo and multifluid modeling of the circumnuclear dust coma. Spherical grain dynamics revisited. ICARUS 176, 192 (2005)ADSCrossRefGoogle Scholar
  10. B.J.R. Davidsson, Y.V. Skorov, On the light-absorbing surface layer of cometary nuclei. I. Radiative transfer. ICARUS 156, 223 (2002)ADSCrossRefGoogle Scholar
  11. O.V. Dobrovolsky, Comets 159, 186 (1966). (Nauka, Moskov, in Russian)Google Scholar
  12. R. Duffard et al., New activity of chiron: results from 5 years of photometric monitoring. ICARUS 160, 44 (2002)ADSCrossRefGoogle Scholar
  13. N. Fougere, M.R. Combi, V. Tenishev, M. Rubin, B.P. Bonev, M.J. Mumma, Understanding measured water rotational temperatures and column densities in the very innermost coma of Comet 73P/Schwassmann–Wachmann 3 B. ICARUS 221, 174 (2012)ADSCrossRefGoogle Scholar
  14. N. Fougere, M.R. Combi, M. Rubin, V. Tenishev, Modeling the heterogeneous ice and gas coma of Comet 103P/Hartley 2. ICARUS 225, 688 (2013)ADSCrossRefGoogle Scholar
  15. V.S. Filonenko, K.I. Churyumov, New peculiarities of cometary outburst activity. Adv. Space Res. 38, 1940 (2006)ADSCrossRefGoogle Scholar
  16. S. Fornasier et al., TNOs are cool: a survey of the trans-neptunian region. VIII. Combined Herschel PACS and SPIRE observations of nine bright targets at 70–500 \(\upmu {\text{ m }}\). Astron. Astrophys. 555, 2215 (2013)CrossRefGoogle Scholar
  17. S. Fornasier et al., The Centaur 10199 Chariklo: investigation into rotational period, absolute magnitude, and cometary activity. Astron. Astrophys. 568, 11 451 (2014)CrossRefGoogle Scholar
  18. P. Gronkowski, The search for a cometary outbursts mechanism: a comparison of various theories. Astron. Nachr. 328, 126 (2007)ADSCrossRefzbMATHGoogle Scholar
  19. P. Gronkowski, Large cometary grains—their destruction and changes in the luminosity of comets. Mon. Not. R. Astron. Soc. 397, 883 (2009)ADSCrossRefzbMATHGoogle Scholar
  20. P. Gronkowski, The outbursts of the comet 29P/Schwassmann–Wachmann 1: a new approach to the old problem. Astron. Nachr. 335, 124 (2014)ADSCrossRefGoogle Scholar
  21. P. Gronkowski, M. Wesołowski, A model of cometary outbursts: a new simple approach to the classical question. Mon. Not. R. Astron. Soc. 451, 3068 (2015)ADSCrossRefGoogle Scholar
  22. O. Groussin, P. Lamy, L. Jorda, Properties of the nuclei of Centaurs Chiron and Chariklo. Astron. Astrophys. 413, 1163 (2004)ADSCrossRefGoogle Scholar
  23. M. Gunnarsson, Icy grains as a source of CO in comet 29P/Schwassmann–Wachmann 1. Astron. Astrophys. 398, 353 (2003)ADSCrossRefGoogle Scholar
  24. J.I. Hage, J.M. Greenberg, A model for the optical properties of porous grains. Astrophys. J. 361, 251 (1990)ADSCrossRefGoogle Scholar
  25. O. Hainaut, A. Smette, R.M. West, Periodic Comet Halley (1986 III), IAU Circular No. 5189 (1991)Google Scholar
  26. W.K. Hartmann, Physical mechanism of comet outbursts—an experimental result. ICARUS 104, 226 (1993)ADSCrossRefGoogle Scholar
  27. D.W. Hughes, Cometary outbursts—a review. Q. J. R. Astron. Soc. 31, 64 (1990)ADSGoogle Scholar
  28. D.W. Hughes, Comets in the Post-Halley Era, in Comets in the Post-HalleyEra, vol. 2, ed. by R.L. Newburn, M. Neugebauer Jr., J. Rahe (Kluwer, Dordrecht, 1991), p. 825Google Scholar
  29. S.I. Ipatov, M.F. A’Hearn, The outburst triggered by the Deep Impact collision with Comet Tempel 1. Mon. Not. R. Astron. Soc. 414, 76 (2011)ADSCrossRefGoogle Scholar
  30. S.I. Ipatov, Location of upper borders of cavities containing dust and gas under pressure in comets. Mon. Not. R. Astron. Soc. 423, 3474 (2012)ADSCrossRefGoogle Scholar
  31. D. Jewitt, The persistent coma of Comet P/Schwassmann–Wachmann 1. Astrophys. J. 351, 277 (1990)ADSCrossRefGoogle Scholar
  32. D. Jewitt, The active centaurs. Astrophys. J. 137, 4296 (2009)ADSGoogle Scholar
  33. J. Jones, The ejection of meteoroids from comets. Mon. Not. R. Astron. Soc. 275, 773 (1995)ADSCrossRefGoogle Scholar
  34. H.U. Keller, in Physics and Chemistry of Comets, vol. 21, ed. by W.F. Huebner (Springer, Berlin, 1990)Google Scholar
  35. M. Kelley et al., A distribution of large particles in the coma of Comet 103P/Hartley 2. ICARUS 222, 634 (2013)ADSCrossRefGoogle Scholar
  36. E. Kührt, Temperature profiles and thermal stresses in cometary nuclei. ICARUS 60, 512 (1984)CrossRefGoogle Scholar
  37. C. Kowal, T. Gehrels, Slow-moving object Kowal. IAUC 3129, 1 (1977)ADSGoogle Scholar
  38. A. Li, J.M. Greenberg, A unified model of interstellar dust. Astron. Astrophys. 323, 566 (1997)ADSGoogle Scholar
  39. H.W. Lin et al., Pan-STARRS 1 observations of the unusual active centaur P/2011 S1(Gibbs). Astron. J. 147, 114 (2014)ADSCrossRefGoogle Scholar
  40. J.X. Luu, Cometary activity in distant comets—Chiron. Astron. Soc. Pac. 105, 946 (1993)ADSCrossRefGoogle Scholar
  41. K.J. Meech, M.J.S. Belton, The atmosphere of 2060 Chiron. Astrophys. J. 100, 1323 (1990)ADSGoogle Scholar
  42. A. Molina, The importance of nucleus rotation in determining the largest grains ejected from comets. Rev. Mex. Astron. Astrofis. 46, 323 (2010)ADSGoogle Scholar
  43. A. Molina, F. Moreno, Leonid meteoroids: reconciliation of cometary outgassing theory and electrophonic sound data. Astron. J. 141, 148 (2011)ADSCrossRefGoogle Scholar
  44. T. Mukai, Analysis of a dirty water-ice model for cometary dust. Astron. Astrophys. 164, 397 (1986)ADSGoogle Scholar
  45. R.L. Newburn, H. Spinrad, Spectrophotometry of seventeen comets. II—the continuum. Astron. J. 90, 2591 (1985)ADSCrossRefGoogle Scholar
  46. D. Prialnik, M. Podolak, Radioactive heating of porous comet nuclei. ICARUS 117, 420 (1995)ADSCrossRefGoogle Scholar
  47. W.T. Reach, J. Vaubaillon, C.M. Lisse, M. Holloway, J. Rho, ICARUS 208, 276 (2010)ADSCrossRefGoogle Scholar
  48. P. Rousselot, 174P/Echeclus: a strange case of outburst. Astron. Astrophys. 480, 543 (2008)ADSCrossRefGoogle Scholar
  49. M. Rubin et al., Monte Carlo modeling of neutral gas and dust in the coma of Comet 1P/Halley. ICARUS 213, 655 (2011)ADSCrossRefGoogle Scholar
  50. J.D. Ruprecht et al., 29 November 2011 stellar occultation by 2060 Chiron: symmetric jet-like features. ICARUS 252, 271 (2015)ADSCrossRefGoogle Scholar
  51. S.A. Stern et al., Numerical simulations of particle orbits around 2060 Chiron. Astrophys. J. 107, 765 (1994)Google Scholar
  52. L.V. Tambovtseva, L.I. Shestakova, Cometary splitting due to thermal stresses. Planet. Space Sci. 47, 319 (1999)ADSCrossRefGoogle Scholar
  53. G. Tancredi, H. Rickman, J.M. Greenberg, Thermochemistry of cometary nuclei. 1: the Jupiter family case. Astron. Astrophys. 286, 659 (1994)ADSGoogle Scholar
  54. V.M. Tenishev, M.R. Combi, M. Rubin, Numerical simulation of dust in a cometary coma: application to Comet 67P/Churyumov–Gerasimenko. Astrophys. J. 732, 104 (2011)ADSCrossRefGoogle Scholar
  55. R.M. West, A photometric study of (2060) Chiron and its coma. Astron. Astrophys. 241, 635 (1991)ADSGoogle Scholar
  56. S. Wyckoff, Overview of comet observations, in Comets, ed. by L.L. Wilkening (The University of Arizona Press, Tucson, 1982), pp. 3–55Google Scholar
  57. J.B. Vincent et al., Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse. Nature 523, 67 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and Natural SciencesUniversity of RzeszówRzeszówPoland

Personalised recommendations