Advertisement

Earth, Moon, and Planets

, Volume 119, Issue 1, pp 1–21 | Cite as

A Search for Meteoroid Lunar Impact Generated Electromagnetic Pulses

  • Saiveena Kesaraju
  • John D. MathewsEmail author
  • Juha Vierinen
  • Phil Perillat
  • David D. Meisel
Article

Abstract

Lunar white light flashes associated with meteoroid impacts are now regularly observed using modest optical instrumentation. In this paper, we hypothesize that the developing, optically-dense hot ejecta cloud associated with these hypervelocity impacts also produce an associated complex plasma component that rapidly evolves resulting in a highly-transient electro magnetic pulse (EMP) in the VHF/UHF spectral region. Discovery of the characteristics and event frequency of impact EMPs would prove interesting to meteoroid flux and complex plasma physics studies especially if EMPs from the same event are detected from at least two locations on the Earth with relative delays appropriate to the propagation paths. We describe a prototype observational search, conducted in May 2014, for meteoroid lunar-impact EMPs that was conducted using simultaneous, overlapping-band, UHF radio observations at the Arecibo (AO; Puerto Rico) and Haystack (HO, Massachusetts, USA) Observatories. Monostatic/bistatic lunar radar imaging observations were also performed with HO transmitting and HO/AO receiving to confirm tracking, the net delay, and the pointing/timing ephemeris at both observatories. Signal analysis was performed using time–frequency signal processing techniques. Although, we did not conclusively identify EMP returns, this search detected possible EMPs and we have confirmed the search paradigm and established the sensitivity of the AO–HO system in detecting the hypothesized events. We have also characterized the difficult radio-frequency interference environment surrounding these UHF observations. We discuss the wide range of terrestrial-origin, Moon-bounce signals that were observed which additionally validate the observational technique. Further observations are contemplated.

Keywords

EMP Electromagnetic pulse Moon bounce Lunar impact 

Abbreviations

AO

Arecibo observatory

EMP

Electromagnetic pulse

FFT

Fast Fourier transform

HO

Haystack MISA antenna

ISAR

Inverse synthetic aperture radar

ITU

International Telecommunication Union

PRF

Pulse repetition frequency

RF

Radio frequency

STFT

Short time Fourier transform

TDRA

Time domain radio astronomy mode

TOMB

Terrestrial origin moon bounce

UHF

Ultra-high frequency

UT

Universal time

Notes

Acknowledgments

This effort was supported under NSF Grants ATM 07-21613 and AGS 12-02019 to the Pennsylvania State University.

References

  1. C.-C. Chen, H.C. Andrews, Target-motion-induced radar imaging, in IEEE Transactions on Aerospace and Electronic Systems, pp. 2–14 (1980)Google Scholar
  2. V.C. Chen, Inverse Synthetic Aperture Radar Imaging Principles, Algorithms and Applications (SciTech Publishing, an imprint of the IET, Edison, NJ, 2014)Google Scholar
  3. S. Close, P. Colestock, L. Cox, M. Kelley, N. Lee, Electromagnetic pulses generated by meteoroid impacts on spacecraft. J. Geophys. Res.: Space Phys. 115, A12328 (2010)ADSCrossRefGoogle Scholar
  4. S. Close, I. Linscott, N. Lee, T. Johnson, D. Strauss, A. Goel, et al., Detection of electromagnetic pulses produced by hypervelocity micro particle impact plasmas. Phys. Plasmas (1994-present) 20, 092102 (2013)Google Scholar
  5. A. Collette, K. Drake, A. Mocker, Z. Sternovsky, T. Munsat, M. Horanyi, Time-resolved temperature measurements in hypervelocity dust impact. Planet. Space Sci. 89, 58–62 (2013)ADSCrossRefGoogle Scholar
  6. L. Foschini, Electromagnetic interference from plasmas generated in meteoroids impacts. EPL (Europhys. Lett.) 43, 226 (1998)ADSCrossRefGoogle Scholar
  7. J.F. Friichtenicht, J.C. Slattery, Ionization associated with hypervelocity impact, TND2091 (1963). https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19630010729.pdf
  8. T. Hagfors, W. Kofman, Mapping of overspread targets in radar astronomy. Radio Sci. 26, 403–416 (1991)ADSCrossRefGoogle Scholar
  9. J.K. Harmon, Planetary delay-Doppler radar and the long-code method. IEEE Trans. Geosci. Remote Sens. 40, 1904–1916 (2002)ADSCrossRefGoogle Scholar
  10. ITU, Characteristics of and protection criteria for radars operating in the radiolocation service in the frequency range 420–450 MHz, M.1462, (2000). https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.1462-0-200005-I!!PDF-E.pdf
  11. T. Johnson, I. Linscott, S. Close, D. Strauss, N. Lee, R. Adamo, et al., Detection and analysis of RF data from hypervelocity impacts, in Proceedings of 3rd AIAA Atmosphere Space Environment Conference, (2011), pp. 1–9Google Scholar
  12. M.A.M. Larbi, A. Daassou, D. Baratoux, S. Bouley, Z. Benkhaldoun, M. Lazrek et al., First lunar flashes observed from Morocco (ILIAD Network): implications for Lunar seismology. Earth Moon Planet 115, 1–21 (2015)ADSCrossRefGoogle Scholar
  13. D.M. Le Vine, Sources of the strongest RF radiation from lightning. J. Geophys. Res.: Oceans 85, 4091–4095 (1980)CrossRefGoogle Scholar
  14. N. Lee, S. Close, D. Lauben, I. Linscott, A. Goel, T. Johnson et al., Measurements of freely-expanding plasma from hypervelocity impacts. Int. J. Impact Eng. 44, 40–49 (2012)CrossRefGoogle Scholar
  15. J. Madiedo, J. Trigo-Rodriguez, Historical records of delta-arietids superfireballs over Spain, in Lunar and Planetary Science Conference, p. 1368 (2011)Google Scholar
  16. J.M. Madiedo, J.L. Ortiz, N. Morales, J. Cabrera-Caño, A large lunar impact blast on 2013 September 11. Month. Notices R. Astron. Soc., p. stu083 (2014)Google Scholar
  17. K. Maki, E. Soma, T. Takano, A. Fujiwara, A. Yamori, Dependence of microwave emissions from hypervelocity impacts on the target material. J. Appl. Phys. 97, 104911 (2005)ADSCrossRefGoogle Scholar
  18. K. Maki, T. Takano, A. Fujiwara, A. Yamori, Radio-wave emission due to hypervelocity impacts in relation to optical observation and projectile speed. Adv. Space Res. 34, 1085–1089 (2004)ADSCrossRefGoogle Scholar
  19. H. Martinides, Extraterrestrial Noise in the (Noise from the Moon) UHF Region (300–3000 Mc) (1965). http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19650026836.pdf
  20. J. Mathews, J. Breakall, M. Sulzer, The Moon as a calibration target of convenience for VHF-UHF radar systems. Radio Sci. 23, 1–12 (1988)ADSCrossRefGoogle Scholar
  21. N. McBride, J. McDonnell, Meteoroid impacts on spacecraft: sporadics, streams, and the 1999 Leonids. Planet. Space Sci. 47, 1005–1013 (1999)ADSCrossRefGoogle Scholar
  22. I. Nemtchinov, V. Shuvalov, N. Artem’eva, B. Ivanov, I. Kosarev, I. Trubetskaya, Light flashes caused by meteoroid impacts on the lunar surface. Sol. Syst. Res. 32, 99 (1998)ADSGoogle Scholar
  23. J. Ortiz, F. Aceituno, J. Quesada, J. Aceituno, M. Fernández, P. Santos-Sanz et al., Detection of sporadic impact flashes on the Moon: implications for the luminous efficiency of hypervelocity impacts and derived terrestrial impact rates. Icarus 184, 319–326 (2006)ADSCrossRefGoogle Scholar
  24. C. Ozdemir, Inverse synthetic aperture radar imaging with MATLAB algorithms, vol. 210 (Wiley, New Jersey, 2012)CrossRefGoogle Scholar
  25. P.R. Ratcliff, M.J. Burchell, M.J. Cole, T.W. Murphy, F. Alladfadi, Experimental measurements of hypervelocity impact plasma yield and energetics. Int. J. Impact Eng 20, 663–674 (1997)CrossRefGoogle Scholar
  26. J.J. Rembold, E.V. Ryan, Characterization and analysis of near-earth objects via lunar impact observations. Planet. Space Sci. 117, 119–126 (2015)ADSCrossRefGoogle Scholar
  27. J.S. Son, G. Thomas, B. Flores, Range-Doppler Radar Imaging and Motion Compensation (Artech House Inc., London, 2001)Google Scholar
  28. R. Suggs, D. Moser, W. Cooke, R. Suggs, The flux of kilogram-sized meteoroids from lunar impact monitoring. Icarus 238, 23–36 (2014)ADSCrossRefGoogle Scholar
  29. R.M. Suggs, W.J. Cooke, R.J. Suggs, W.R. Swift, N. Hollon, The NASA lunar impact monitoring program. Earth Moon Planet 102, 293–298 (2008)ADSCrossRefGoogle Scholar
  30. W.T. Sullivan III, S.H. Knowles, Lunar reflections of terrestrial radio leakage, in The Search for Extraterrestrial Life: Recent Developments, (Springer, 1985), pp. 327–334Google Scholar
  31. T. Thompson, R. Dyce, Mapping of lunar radar reflectivity at 70 cm. J. Geophys. Res. 71, 4843–4853 (1966)ADSCrossRefGoogle Scholar
  32. J. Vierinen, On Statistical Theory of Radar Measurements (Aalto University, Espoo, 2012)Google Scholar
  33. J. Vierinen, M.S. Lehtinen, 32-cm wavelength radar mapping of the Moon, in Proceedings of the 6th European Radar Conference (2009)Google Scholar
  34. R.E. Walpole, R.H. Myers, S.L. Myers, K. Ye, Probability and Statistics for Engineers and Scientists, vol. 5 (Macmillan, New York, 1993)zbMATHGoogle Scholar
  35. C.-H. Wen, S. Briczinski, D. Livneh, J. Doherty, J. Mathews, Pulse-level interference and meteor processing of Arecibo ISR data. J. Atmos. Solar Terr. Phys. 69, 973–980 (2007)ADSCrossRefGoogle Scholar
  36. C.-H. Wen, J. Doherty, J. Mathews, Adaptive filtering for the separation of incoherent scatter and meteor signals for Arecibo observation data. J. Atmos. Solar Terr. Phys. 67, 1190–1195 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Saiveena Kesaraju
    • 1
  • John D. Mathews
    • 1
    Email author
  • Juha Vierinen
    • 2
  • Phil Perillat
    • 3
  • David D. Meisel
    • 4
  1. 1.Radar Space Sciences Lab, 323 Electrical Engineering EastThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Haystack ObservatoryMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Arecibo ObservatoryAreciboUSA
  4. 4.Department of Physics and AstronomySUNY-GeneseoGeneseoUSA

Personalised recommendations