Advertisement

Earth, Moon, and Planets

, Volume 117, Issue 1, pp 41–64 | Cite as

3D Direct Simulation Monte Carlo Modelling of the Inner Gas Coma of Comet 67P/Churyumov–Gerasimenko: A Parameter Study

  • Y. Liao
  • C. C. Su
  • R. Marschall
  • J. S. Wu
  • M. Rubin
  • I. L. Lai
  • W. H. Ip
  • H. U. Keller
  • J. Knollenberg
  • E. Kührt
  • Y. V. Skorov
  • N. Thomas
Article

Abstract

Direct Simulation Monte Carlo (DSMC) is a powerful numerical method to study rarefied gas flows such as cometary comae and has been used by several authors over the past decade to study cometary outflow. However, the investigation of the parameter space in simulations can be time consuming since 3D DSMC is computationally highly intensive. For the target of ESA’s Rosetta mission, comet 67P/Churyumov–Gerasimenko, we have identified to what extent modification of several parameters influence the 3D flow and gas temperature fields and have attempted to establish the reliability of inferences about the initial conditions from in situ and remote sensing measurements. A large number of DSMC runs have been completed with varying input parameters. In this work, we present the simulation results and conclude on the sensitivity of solutions to certain inputs. It is found that among cases of water outgassing, the surface production rate distribution is the most influential variable to the flow field.

Keywords

Direct simulation Monte Carlo (DSMC) Comets Coma Comet 67P/Churyumov–Gerasimenko 

Notes

Acknowledgments

This work has been supported by the Swiss National Science Foundation (SNSF) under Grant IZ32Z0_145126 8.

References

  1. A.A. Alexeenko, Elastic collision models in DSMC: a review and guide, in Abstract, DSMC 2013 Conference (2013)Google Scholar
  2. G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford University Press, Oxford, 1994)Google Scholar
  3. M.R. Combi, Time-dependent gas kinetics in tenuous planetary atmospheres: the cometary coma. Icarus 123, 207–226 (1996)ADSCrossRefGoogle Scholar
  4. M.R. Combi, W.H. Smyth, Monte Carlo particle-trajectory models for neutral cometary gases. I—models and equations. Astrophys. J. 327, 1026–1043 (1988)ADSCrossRefGoogle Scholar
  5. J.F. Crifo, G.A. Loukianov, A.V. Rodionov, G.O. Khanlarov, V.V. Zakharov, Comparison between Navier–Stokes and direct Monte-Carlo simulations of the circumnuclear coma. I. Homogeneous, spherical source. Icarus 156, 249–268 (2002)ADSCrossRefGoogle Scholar
  6. J.F. Crifo, G.A. Loukianov, A.V. Rodionov, V.V. Zakharov, Navier–Stokes and direct Monte Carlo simulations of the circumnuclear coma II. Homogeneous, aspherical sources. Icarus 163, 479–503 (2003)ADSCrossRefGoogle Scholar
  7. J.F. Crifo, G.A. Loukianov, A.V. Rodionov, V.V. Zakharov, Direct Monte Carlo and multifluid modeling of the circumnuclear dust coma. Spherical grain dynamics revisited. Icarus 176, 192–219 (2005)ADSCrossRefGoogle Scholar
  8. S. Finklenburg, Investigations of the Near Nucleus Gas and Dust Coma of Comets. PhD thesis, University of Bern, Switzerland (2014)Google Scholar
  9. S. Finklenburg, N. Thomas, C.C. Su, J.S. Wu, The spatial distribution of water in the inner coma of Comet 9P/Tempel 1: comparison between models and observations. Icarus 236, 9–23 (2014)ADSCrossRefGoogle Scholar
  10. N. Fougere, M.R. Combi, M. Rubin, V. Tenishev, Modeling the heterogeneous ice and gas coma of Comet 103P/Hartley 2. Icarus 225, 688–702 (2013)ADSCrossRefGoogle Scholar
  11. N. Fougere, M.R. Combi, V. Tenishev, Global 3D kinetic model of cometary rarefied atmosphere toward a description of the coma of Comet 103P/Hartley 2, in AAS/Division for Planetary Sciences Meeting Abstracts, vol. 45, #413.21 (2013b)Google Scholar
  12. M.A. Gallis, J.R. Torczynski, D.J. Rader, G.A. Bird, Accuracy and convergence of a new DSMC algorithm, in AIAA Paper, 2008-3913 (2008)Google Scholar
  13. J. Greenwood, The correct and incorrect generation of a cosine distribution of scattered particles for Monte-Carlo modelling of vacuum systems. Vacuum 67, 217–222 (2002)CrossRefGoogle Scholar
  14. O. Groussin, J.M. Sunshine, L.M. Feaga, L. Jorda, P.C. Thomas, J.Y. Li, M.F. A’Hearn, M.J.S. Belton, S. Besse, B. Carcich, T.L. Farnham, D. Hampton, K. Klaasen, C. Lisse, F. Merlin, S. Protopapa, The temperature, thermal inertia, roughness and color of the nuclei of Comets 103P/Hartley 2 and 9P/Tempel 1. Icarus 222, 580–594 (2013)ADSCrossRefGoogle Scholar
  15. S. Gulkis, M. Allen, P. Allmen, G. Beaudin, N. Biver, D. Bockelée-Morvan, M. Choukroun, J. Crovisier, B.J.R. Davidsson, P. Encrenaz, T. Encrenaz, M. Frerking, P. Hartogh, M. Hofstadter, W.H. Ip, M. Janssen, C. Jarchow, S. Keihm, S.W. Lee, E. Lellouch, C. Leyrat, L. Rezac, F.P. Schloerb, T. Spilker, Subsurface properties and early activity of comet 67P/Churyumov–Gerasimenko. Science 347, 6220 (2015)CrossRefGoogle Scholar
  16. M. Hässig, K. Altwegg, H. Balsiger, A. Bar-Nun, J.J. Berthelier, A. Bieler, P. Bochsler, C. Briois, U. Calmonte, M. Combi, J. De Keyser, P. Eberhardt, B. Fiethe, S.A. Fuselier, M. Galand, S. Gasc, T.I. Gombosi, K.C. Hansen, A. Jäckel, H.U. Keller, E. Kopp, A. Korth, E. Kührt, L. Le Roy, U. Mall, B. Marty, O. Mousis, E. Neefs, T. Owen, H. Rème, M. Rubin, T. Sémon, C. Tornow, C.Y. Tzou, J.H. Waite, P. Wurz, Time variability and heterogeneity in the coma of 67P/Churyumov–Gerasimenko. Science 347, 6220 (2015)CrossRefGoogle Scholar
  17. W.F. Huebner, J. Benkhoff, M.T. Capria, A. Coradini, C. De Sanctis, R. Orosei, D. Prialnik, Heat and Gas Diffusion in Comet Nuclei (ISSI/ESA Publications, Noordwijk, 2006)Google Scholar
  18. L. Jorda, R. Gaskell, S.F. Hviid, C. Capanna, F. Preusker, F. Scholten, P. Gutiérrez, Shape Models of 67P/Churyumov–Gerasimenko. RO-C-OSINAC/OSIWAC-5-67PSHAPE-V1.0. NASA Planetary Data System and ESA Planetary Science Archive (2015) (in preparation)Google Scholar
  19. H.U. Keller, C. Barbieri, P. Lamy, H. Rickman, R. Rodrigo, K.P. Wenzel, H. Sierks, M.F. A’Hearn, F. Angrilli, M. Angulo, M.E. Bailey, P. Barthol, M.A. Barucci, J.L. Bertaux, G. Bianchini, J.L. Boit, V. Brown, J.A. Burns, I. Büttner, J.M. Castro, G. Cremonese, W. Curdt, V. Da Deppo, S. Debei, M. De Cecco, K. Dohlen, S. Fornasier, M. Fulle, D. Germerott, F. Gliem, G.P. Guizzo, S.F. Hviid, W.H. Ip, L. Jorda, D. Koschny, J.R. Kramm, E. Kührt, M. Küppers, L.M. Lara, A. Llebaria, A. López, A. López-Jimenez, J. López-Moreno, R. Meller, H. Michalik, M.D. Michelena, R. Müller, G. Naletto, A. Origné, G. Parzianello, M. Pertile, C. Quintana, R. Ragazzoni, P. Ramous, K.U. Reiche, M. Reina, J. Rodríguez, G. Rousset, L. Sabau, A. Sanz, J.P. Sivan, K. Stöckner, J. Tabero, U. Telljohann, N. Thomas, V. Timon, G. Tomasch, T. Wittrock, M. Zaccariotto, OSIRIS—the scientific camera system Onboard Rosetta. Space Sci. Rev. 128, 433–506 (2007)ADSCrossRefGoogle Scholar
  20. I.L. Lai, C.C. Su, W.H. Ip, C.E. Wei, J.S. Wu, M.C. Lo, Y. Liao, N. Thomas, Transport and distribution of oxygen atoms from H2O photodissociation in the inner coma of comet 67P/Churyumov–Gerasimenko. Earth Moon Planets (2015) (this volume)Google Scholar
  21. S. Lee, P. von Allmen, L. Kamp, S. Gulkis, B.J.R. Davidsson, Non-LTE radiative transfer for sub-millimeter water lines in comet 67P/Churyumov–Gerasimenko. Icarus 215, 721–731 (2011)ADSCrossRefGoogle Scholar
  22. S. Mottola, S. Lowry, C. Snodgrass, P.L. Lamy, I. Toth, A. Rożek, H. Sierks, M.F. A’Hearn, F. Angrilli, C. Barbieri, M.A. Barucci, J.L. Bertaux, G. Cremonese, V. Da Deppo, B. Davidsson, M. De Cecco, S. Debei, S. Fornasier, M. Fulle, O. Groussin, P. Gutiérrez, S.F. Hviid, W.H. Ip, L. Jorda, H.U. Keller, J. Knollenberg, D. Koschny, R. Kramm, E. Kührt, M. Küppers, L. Lara, M. Lazzarin, J.J. Lopez Moreno, F. Marzari, H. Michalik, G. Naletto, H. Rickman, R. Rodrigo, L. Sabau, N. Thomas, K.P. Wenzel, J. Agarwal, I. Bertini, F. Ferri, C. Güttler, S. Magrin, N. Oklay, C. Tubiana, J.B. Vincent, The rotation state of 67P/Churyumov–Gerasimenko from approach observations with the OSIRIS cameras on Rosetta. Astron. Astrophys. 569, L2 (2014)Google Scholar
  23. K. Nanbu, Direct simulation scheme derived from the Boltzmann equation. I. Monocomponent gases. J. Phys. Soc. Jpn. 49, 2042–2049 (1980)ADSCrossRefGoogle Scholar
  24. M. Rubin, N. Fougere, K. Altwegg, M.R. Combi, L. Le Roy, V.M. Tenishev, N. Thomas, Mass transport around comets and its impact on the seasonal differences in water production rates. Astrophys. J. 788, 168 (2014)ADSCrossRefGoogle Scholar
  25. S.A. Sandford, L.J. Allamandola, The condensation and vaporization behavior of ices containing SO2, H2S, and CO2: implications for IO. Icarus 106, 478–488 (1993)ADSCrossRefGoogle Scholar
  26. Y.V. Skorov, G.N. Markelov, H.U. Keller, Direct statistical simulation of the near-surface layers of the cometary atmosphere. I. A spherical nucleus. Sol. Syst. Res. 38, 455–475 (2004)ADSCrossRefGoogle Scholar
  27. Y.V. Skorov, G.N. Markelov, H.U. Keller, Direct statistical simulation of the near-surface layers of a cometary atmosphere. II: a nonspherical nucleus. Sol. Syst. Res. 40, 219–229 (2006)ADSCrossRefGoogle Scholar
  28. Y.V. Skorov, H. Rickman, A kinetic model of gas flow in a porous cometary mantle. Planet. Space Sci. 43, 1587–1594 (1995)ADSCrossRefGoogle Scholar
  29. Y.V. Skorov, H. Rickman, Gas flow and dust acceleration in a cometary Knudsen layer. Planet. Space Sci. 47, 935–949 (1999)ADSCrossRefGoogle Scholar
  30. C.C. Su, Parallel Direct Simulation Monte Carlo (DSMC) Methods for Modeling Rarefied Gas Dynamics. PhD thesis. National Chiao Tung University, Taiwan (2013)Google Scholar
  31. C.C. Su, M.R. Smith, F.A. Kuo, J.S. Wu, C.W. Hsieh, K.C. Tseng, Large-scale simulations on multiple graphics processing units (GPUs) for the direct simulation Monte Carlo method. J. Comput. Phys. 231, 7932–7958 (2012)ADSMathSciNetCrossRefGoogle Scholar
  32. V. Tenishev, M.R. Combi, B.J.R. Davidsson, A global kinetic model for cometary comae: the evolution of the coma of the Rosetta target Comet Churyumov–Gerasimenko throughout the mission. Astrophys. J. 685, 659–677 (2008)ADSCrossRefGoogle Scholar
  33. V. Tenishev, M.R. Combi, M. Rubin, Numerical simulation of dust in a cometary coma: application to comet 67P/Churyumov–Gerasimenko. Astrophys. J. 732, 104 (2011)ADSCrossRefGoogle Scholar
  34. M. Vargas, S. Stefanov, D. Valougeorgis, On the effect of the boundary conditions and the collision model on rarefied gas flows, in AIP Conference Proceedings-American Institute of Physics, vol. 1333, p. 354 (2011)Google Scholar
  35. W. Wagner, A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation. J. Stat. Phys. 66, 1011–1044 (1992)ADSCrossRefzbMATHGoogle Scholar
  36. J.S. Wu, Y.Y. Lian, Parallel three-dimensional direct simulation Monte Carlo method and its applications. Comput. Fluids 32, 1133–1160 (2003)CrossRefzbMATHGoogle Scholar
  37. J.S. Wu, K.C. Tseng, Parallel DSMC method using dynamic domain decomposition. Int. J. Numer. Meth. Eng. 63, 37–76 (2005)CrossRefzbMATHGoogle Scholar
  38. J.S. Wu, K.C. Tseng, F.Y. Wu, Parallel three-dimensional DSMC method using mesh refinement and variable time-step scheme. Comput. Phys. Commun. 162, 166–187 (2004)ADSCrossRefzbMATHGoogle Scholar
  39. T. Ytrehus, Kinetic Theory Description and Experimental Results for Vapor Motion in Arbitrary Strong Evaporation (Von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, 1975)Google Scholar
  40. V.V. Zakharov, A.V. Rodionov, G.A. Lukianov, J.F. Crifo, Monte-Carlo and multifluid modelling of the circumnuclear dust coma II. Aspherical-homogeneous, and spherical-inhomogeneous nuclei. Icarus 201, 358–380 (2009)ADSCrossRefGoogle Scholar
  41. S.W. Zhang, G.Z. Li, J. Han, The positional and angular distribution of molecules flowing through cylindrical tube in free molecular flow. Phys. Procedia 32, 513–524 (2012)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Physics InstituteUniversity of BernBernSwitzerland
  2. 2.Department of Mechanical EngineeringNational Chiao Tung UniversityHsinchu CityTaiwan
  3. 3.Institute of Space ScienceNational Central UniversityTaoyuan CityTaiwan
  4. 4.Max Planck Institut für SonnensystemforschungGöttingenGermany
  5. 5.DLR, Institute of Planetary ResearchBerlinGermany

Personalised recommendations