Advertisement

Earth, Moon, and Planets

, Volume 111, Issue 1–2, pp 47–77 | Cite as

Pneumatic and Percussive Penetration Approaches for Heat Flow Probe Emplacement on Robotic Lunar Missions

  • K. Zacny
  • S. Nagihara
  • M. Hedlund
  • G. Paulsen
  • J. Shasho
  • E. Mumm
  • N. Kumar
  • T. Szwarc
  • P. Chu
  • J. Craft
  • P. Taylor
  • M. Milam
Article

Abstract

In this paper, the development of heat flow probes for measuring the geothermal gradient and conductivity of lunar regolith are presented. These two measurements are the required information for determining the heat flow of a planetary body. Considering the Moon as an example, heat flow properties are very important information for studying the radiogenic isotopes, the thermal evolution and differentiation history, and the mechanical properties of the interior. In order to obtain the best measurements, the sensors must be extended to a depth of at least 3 m, i.e. beyond the depth of significant thermal cycles. Two approaches to heat flow deployment and measurement are discussed in this paper: a percussive approach and a pneumatic approach. The percussive approach utilizes a high frequency hammer to drive a cone penetrometer into the lunar simulant. Ring-like thermal sensors (heaters and temperature sensors) on the penetrometer rod are deployed into the simulant every 30 cm as the penetrometer penetrates to the required 3 m depth. Once the target depth has been achieved, the deployment rod is removed from the simulant, eliminating any thermal path to the lander. The pneumatic approach relies on pressurized gas to excavate, using a cone-shaped nozzle to penetrate the simulant. The nozzle is attached to a coiled stem with thermal sensors embedded along the length of the stem. As the simulant is being lofted out of the hole by the escaping gas, the stem is progressively reeled out from a spool, thus moving the cone deeper into the hole. Thermal conductivity is measured using a needle probe attached to the end of the cone. Breadboard prototypes of these two heat flow probe systems have been constructed and successfully tested under lunar-like conditions to approximately 70 cm, which was the maximum possible depth allowed by the size of the test bin and the chamber.

Keywords

Moon Heat flow Heat flow probe Drilling Gas drilling Percussive drilling Penetrometer Heat flow sensors Heat flux Lunar 

Abbreviations

ALSEP

Apollo lunar surface experiment package

NAC

NASA Advisory Council

NRC

National Research Council

PRT

Platinum resistance thermometer

RTD

Resistance temperature detector

Notes

Acknowledgments

Partial funding for the work presented in this paper has been provided by NASA through the Small Business innovative research (SBIR) program and the NASA Planetary Instrument Definition and Development Program (10-PIDDP10-0028).

References

  1. K.A. Alshibli, A. Hasan, Strength properties of JSC-1A lunar regolith simulant. J. Geotech. Geoenviron. Eng. 135(5), 673–679 (2009)CrossRefGoogle Scholar
  2. H. Arslan, S. Batiste, S. Sture, Engineering properties of lunar soil simulant JSC-1A. J. Aerosp. Eng 23(1), 70 (2010). doi: 10.1061/(ASCE)0893-1321 CrossRefGoogle Scholar
  3. S. Carlson, A homemade high-precision thermometer. Sci. Am. 280, 102–103 (1999)CrossRefGoogle Scholar
  4. D. Carrier, The four things you need to know about the geotechnical properties of lunar soil, Lunar Geotechnical Institute, September (2005)Google Scholar
  5. B.A. Cohen, J. Veverka, B. Banerdt, A. Dombard, L. Elkins-Tanton, R. Grimm, Y. Nakamura, C.R. Neal, J. Plescia, S. Smrekar, B. Weiss, T. Morgan, J. McDougal, ILN Final Report (Washington, National Aeronautics and Space Administration, 2009), p. 45Google Scholar
  6. D.M. Cole, L.A. Taylor, Y. Liu, M.A. Hopkins, Grain-scale mechanical properties, in Engineering Science, Construction and Operations in Challenging Environments (12th), ASCE Earth and Space 2010, 14–17 March, Honolulu HI (2010)Google Scholar
  7. D.A. DeVries, A.J. Peck, On the cylindrical probe method of measuring thermal conductivity with special reference to soils. Aust. J. Phys. 11, 255–271 (1958)ADSCrossRefGoogle Scholar
  8. L.T. Elkins-Tanton, N. Chatterjee, T. Chatterjee, Experimental and petrological constraints on lunar differentiation from the Apollo 15 green picritic glasses. Meteor. Planet. Sci. 38, 515–527 (2003)ADSCrossRefGoogle Scholar
  9. S.D. Fuerstenau, Solar heating of suspended particles and the dynamics of Martian dust devils. Geophys. Res. Lett. 33, L19S03 (2006). doi: 10.1029/2006GL026798 CrossRefGoogle Scholar
  10. R. Gelm, M. Izzo, P. Magnani, E. Re, A. Grzesik, L. Richter, R. Nadalini, P. Coste, Mole carried sensor package, ESMATS (2007)Google Scholar
  11. G.H. Heiken, D.T. Vaniman, B.M. French (eds.), Lunar Sourcebook: A User’s Guide to the Moon (Cambridge University Press, Cambridge, 1991)Google Scholar
  12. A. Hagermann, S. Tanaka, Y. Saito, Thermal measurements on penetrators geometry sensitivity and optimization issues, in Penetrometry in the Solar System II, ed. by G. Kargl, N.I. Komle, A.J. Ball, R.D. Lorenz (Austrian Academy of Sciences Press, Vienna, 2009), pp. 109–122Google Scholar
  13. S.J. Keihm and M.G. Langseth, In-situ measurements of lunar heat flow, in Soviet-American conference on geochemistry of the moon and planets, pp. 283–293 (1977), NASA SP-289Google Scholar
  14. W. Kiefer, Lunar heat flow experiments: science objectives and a strategy for minimizing the effects of lander-induced perturbations. Planet. Space Sci. 60(1), 155–165 (2012)MathSciNetADSCrossRefGoogle Scholar
  15. L. Klosky, S. Sture, Hon.-Yim. Ko, F. Barnes, Vibratory excavation and anchoring tools for the lunar surface. Proc of Eng. Constr. Oper. Space V 1996, 903–911 (1996). doi: 10.1061/40177(207)122 CrossRefGoogle Scholar
  16. N.I. Komle, E.S. Hutter, G. Kargl, H.H. Ju, Y. Gao, J. Grygorczuk, Development of thermal sensors and drilling systems for application on lunar lander missions. Earth Moon Planet 103, 119–141 (2008). doi: 10.1007/s11038-008-9240-4 ADSCrossRefGoogle Scholar
  17. N.I. Komle, E.S. Hutter, W. Macher, E. Kaufmann, G. Kargl, J. Knollenberg, M. Grott, T. Spohn, R. Wawrzaszek, M. Banaszkiewicz, K. Seweryn, A. Hagermann, In situ methods for measuring thermal properties and heat flux on planetary bodies. Planet. Space Sci. 59, 639–660 (2011)ADSCrossRefGoogle Scholar
  18. M.G. Langseth, S.J. Keihm, K. Peters, Revised lunar heat-flow values. Proc. Lunar Sci. Conf 7, 3143–3171 (1976)ADSGoogle Scholar
  19. C. Lister, The pulse probe method of conductivity measurement. G. J. R. Astr. Soc. 57, 451–461 (1979)CrossRefGoogle Scholar
  20. R. Lorenz, S. Shandera, Target effects during penetrator emplacement: heating, triboelectric charging, and mechanical disruption. Planet. Space Sci. 50(2), 163–179 (2002)ADSCrossRefGoogle Scholar
  21. C. Mclemore, Simulant listings, http://isru.msfc.nasa.gov/lib/Documents/Simulant-listing.pdf, Accessed 12 July 2011 (2010)
  22. S. Nagihara, P.T. Taylor, M.B. Milam, P.D. Lowman, Y. Nakamura, Designing heat flow experiments for future lunar missions. Lunar Planet. Sci. Conf. 39, 1087 (2008a)ADSGoogle Scholar
  23. S. Nagihara, P.T. Taylor, M.B. Milam, P.D. Lowman, Y. Nakamura, Challenges for heat flow measurements on future lunar landing missions. NLSI Planet. Sci. Conf. 1415, 2049 (2008b)Google Scholar
  24. National Research Council, Vision and voyages for planetary science in the decade 2013–2022 (National Academies Press, Washington, 2011), p. 480Google Scholar
  25. R. Perry, D. Green, Perry’s Chemical Engineers’ Handbook, 6th edn. (McGraw-Hill Company, New York, 1984). ISBN 0-07-049479-7Google Scholar
  26. H. Pollack, S. Hurter, J.R. Johnson, Heat flow from the earth’s interior: analysis of the global data set. Rev. Geophys. 31, 267–280 (1993)ADSCrossRefGoogle Scholar
  27. M. Presley, P. Christensen, The effect of bulk density and particle size sorting on the thermal conductivity of particulate materials under Martian atmospheric pressures. J. Geophys. Res. 102(E4), 9221–9229 (1997)ADSCrossRefGoogle Scholar
  28. Y. Saito, S. Tanaka, J. Takita, K. Horai, A. Hagermann, Lost Apollo heat flow data suggest a different lunar bulk composition (Lunar and Planetary Science Conference, Abstract, 2007a). 2197Google Scholar
  29. Y. Saito, S. Tanaka, J. Takita, K. Horai, A. Hagermann, Unprocessed Apollo heat flow measurement data (in Japanese). Bull. Japanese Soc. Planet. Sci. 16, 158–164 (2007b)Google Scholar
  30. Y. Saito, S. Tanaka, K. Horai, A. Hagermann, The long term temperature variation in the lunar subsurface. Lunar Planet. Sci. Conf. 1663 (2008)Google Scholar
  31. M. Seigler, D.A. Paige, S.J. Keihm, A.R. Vasavada, R.R. Ghent, J.L. Bandfield, K.J. Snook, Apollo lunar heat flow experiments and the LRO diviner radiometer. Lunar Planet. Sci. Conf. 41, 2650 (2010)ADSGoogle Scholar
  32. S.E. Smrekar, G. Mungas, G. Peters, T.L. Hudson, P. Morgan, Lunar heat flow simulation and testing chamber. Lunar Planet. Sci. Conf. 40, 2055 (2009)ADSGoogle Scholar
  33. R.P. Von Herzen, A.E. Maxwell, The measurement of thermal conductivity of deep-sea sediments by a needle probe method. J. Geophys. Res. 64, 1557–1563 (1959)ADSCrossRefGoogle Scholar
  34. M.A. Wieczorek, S. Huang, A reanalysis of Apollo 15 and 17 surface and subsurface temperature series. Lunar Planet. Sci. Conf. 37, 1682 (2006)ADSGoogle Scholar
  35. K. Zacny, G. Mungas, C. Mungas, D. Fisher, M. Hedlund, Pneumatic excavator and regolith transport system for lunar ISRU and construction, Paper No: AIAA-2008-7824 and Presentation, AIAA SPACE, San Diego (2008a)Google Scholar
  36. K. Zacny, P. Fink, B. Milam, S. Nagihara, P. Taylor, Heat Flow probe deployment in lunar regolith simulant using a percussive penetrator, Abstract 4021, LEAG-ICEUM-SRR, 28–31 October, Cape Canaveral, FL (2008b)Google Scholar
  37. K. Zacny, E. Mumm, P. Fink, W. Hernandez, G. Paulsen, M. Maksymuk, Telescope/pneumatic heat flow deployment for the international lunar network missions. Lunar Planet. Sci. Conf. 40, 1070 (2009)ADSGoogle Scholar
  38. K. Zacny, J. Wilson, J. Craft, V. Asnani, H. Oravec, C. Creager, J. Johnson, T. Fong, Robotic lunar geotechnical tool, ASCE Earth and Space 2010, 15–17 March, Honolulu HI (2010a)Google Scholar
  39. K. Zacny, Robert P. Mueller, Jack Craft, Jack Wilson, Magnus Hedlund, Joanna Cohen, Five-step parametric prediction and optimization tool for lunar surface systems excavation tasks, ASCE Earth and Space 2010, 15–17 March, Honolulu HI (2010b)Google Scholar
  40. K. Zacny, J. Craft, M. Hedlund, P. Chu, G. Galloway, R. Mueller, Investigating the efficiency of pneumatic transfer of JSC-1a lunar regolith simulant in vacuum and lunar gravity during parabolic flights. AIAA Space 2010, AIAA-2010-8702, Aug 31–Sep 2, Anaheim, CA (2010c)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • K. Zacny
    • 1
  • S. Nagihara
    • 2
  • M. Hedlund
    • 1
  • G. Paulsen
    • 1
  • J. Shasho
    • 3
  • E. Mumm
    • 4
  • N. Kumar
    • 3
  • T. Szwarc
    • 5
  • P. Chu
    • 1
  • J. Craft
    • 3
  • P. Taylor
    • 6
  • M. Milam
    • 6
  1. 1.Honeybee RoboticsPasadenaUSA
  2. 2.Department of GeosciencesTexas Tech UniversityLubbockUSA
  3. 3.Honeybee RoboticsNew YorkUSA
  4. 4.Honeybee RoboticsLongmontUSA
  5. 5.Stanford UniversityStanfordUSA
  6. 6.NASA/GSFCGreenbeltUSA

Personalised recommendations