Earth, Moon, and Planets

, Volume 110, Issue 3–4, pp 143–155 | Cite as

Stability of the Triangular Points Under Combined Effects of Radiation and Oblateness in the Restricted Three-Body Problem

  • Elbaz I. Abouelmagd


This paper deals with the existence of triangular points and their linear stability when the primaries are oblate spheroid and sources of radiation considering the effect of oblateness up to 10−6 of main terms in the restricted three-body problem; we see that the locations of the triangular points are affected by the oblateness of the primaries and solar radiation pressure. It is further seen that these points are stable for 0 ≤ μ ≤μ c ; and unstable for μ c  ≤ μ ≤1/2; where μ c is the critical mass value depending on terms which involve parameters that characterize the oblateness and radiation repulsive forces such that \( \mu_{c} \in (0,1/2) \); in addition to this an algorithm has been constructed to calculate the critical mass value.


Restricted three-body problem Triangular points Stability Oblateness Radiation pressure 


  1. E.I. Abouelmagd, Astrophys. Space Sci. 342, 45 (2012)ADSCrossRefGoogle Scholar
  2. E.I. Abouelmagd, S.M. El-Shaboury, Astrophys. Space Sci. 341, 331 (2012)ADSCrossRefGoogle Scholar
  3. E.I. Abouelmagd, M.A. Sharaf, The motion around the libration points in the restricted three-body problem with the effect of radiation and oblateness. Astrophys. Space Sci. (2013). doi: 10.1007/s10509-012-1335-8 Google Scholar
  4. K.B. Bhatnagar, P.P. Hallan, Celest. Mech. 20, 95 (1979)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. S.M. El-Shaboury, Earth Moon Planets 49, 233 (1990)ADSCrossRefGoogle Scholar
  6. V. Kumar, R.K. Choudhry, Celest. Mech. 39, 159 (1986)ADSzbMATHCrossRefGoogle Scholar
  7. V. Kumar, R.K. Choudhry, Celest. Mech. 40, 155 (1987)ADSzbMATHCrossRefGoogle Scholar
  8. L.G. Lukyanov, Astron. Zh. 61, 564 (1984a)MathSciNetADSGoogle Scholar
  9. L.G. Lukyanov, Astron. Zh. 61, 789 (1984b)ADSGoogle Scholar
  10. L.G. Lukyanov, Astron. Zh. 64, 1291 (1987)MathSciNetADSGoogle Scholar
  11. C.D. Murray, S.F. Dermott, Solar system dynamics. Cambridge University press, Cambridge (1999)Google Scholar
  12. O. Ragos, C. Zagouras, Celest. Mech 44, 135 (1988)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. J.F. Simmons, A.J. McDonald, J.C. Brown, Celest. Mech. 35, 145 (1985)MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. J. Singh, B. Ishwar, Bull. Astron. Soc. India 27, 415 (1999)ADSGoogle Scholar
  15. P.V. Subbarao, R.K. Sharma, Astron Astrophys 43, 381 (1975)ADSzbMATHGoogle Scholar
  16. V. Szebehely, Theory of orbits (Academic press, New York, 1967)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Mathematics Department, Faculty of Science and ArtsKing Abdulaziz UniversityKhulaisSaudi Arabia

Personalised recommendations