Advertisement

Earth, Moon, and Planets

, Volume 110, Issue 1–2, pp 67–79 | Cite as

Deflection of Hazardous Near-Earth Objects by High Concentrated Sunlight and Adequate Design of Optical Collector

  • V. P. VasylyevEmail author
Article

Abstract

Some detailed astronomical and applied aspects deflection of hazardous near-Earth objects (NEO) by direct high concentrated sunlight, causing intensive local ablation of their surfaces, are considered. The major requirements to solar concentrating optics within a single collector (a large mirror) approach, along with the asteroid properties being most substantial in achieving the predetermined effect for the period less than a year (mid-thrust action), are discussed. Such a hastened strategy may become topical in the case of late detection of potential danger, and also, if required, in providing the possibility for some additional action. It is also more acceptable in the public perception and keeping the peace for mankind rather than a long-run expectation of the incorrigible deflection resulting shortly ahead of the predicted hazard. The conventional concave reflectors have been graved to be practically inapplicable within the high concentrating geometry. This is primarily because of the dramatic spread of their focal spots at needful inclinations of optical axis from the direction toward the Sun, as well as of problematic use of the secondary optics. An alternative design of a mirrored ring-array collector is presented (as a tested and approved point-focus version of innovative reflective lenses for sunlight concentration within this approach), and comparative analysis was made. The assessment argues in favor of such a type of high-aperture optics having more capabilities than conventional devices. Mainly, this is because of the underside position (as respects the entrance aperture) of its focal area that allows avoidance of target shadowing the reflecting surfaces and minimizes their coating by the ejected debris. By using the modern asteroids database, some key estimations have been obtained. The surface irradiance around 4–5 MW/m2 (average across the focal spot concentration level ~5 × 103) for the ring-array collector size ~0.5 of asteroid diameter might suffice to deflect a 0.5-km-diameter NEO during several months. For the larger diameter NEOs, to 1.3–2.2 km, the required collector sizes are about the asteroid diameters, and they are even greater for more massive objects.

Keywords

Hazardous near-Earth objects Deflection by high concentrated sunlight Asteroid properties Mid-thrust action Ring-array concentrating collector 

Notes

Acknowledgments

The author thanks V. A. Sergeev for help in drawing the figures, and also the referees, Dr. H. J. Melosh and Dr. A. W. Harris, as well as Dr. Murthy Gudipati, Editor in Chief, and Dr. M. A’Hearn, Associate Editor, for their helpful hints and useful comments and suggestions that has greatly improved the text.

References

  1. P.A. Abell, D.J. Korsmeyer, R.R. Landis, T.D. Jones, D.R. Adamo, D.D. Morrison, L.G. Lemke, A.A. Gonzales, R. Gershman, T.H. Sweetser, L.L. Johnson, E. Lu, Meteorit. Planet. Sci. 44, 1825 (2009)ADSCrossRefGoogle Scholar
  2. Asteroid Lightcurve Data Base (LCDB) (2012), http://www.minorplanet.info/lightcurvedatabase.html
  3. J.C. Bortz, N.E. Shatz, E. Narkis, A. Lewandowski, in Proceedings of the SPIE Conference on Nonimaging Optics: Maximum Efficiency Light Transfer III, R. ed. by R. Winston, vol. 2538 (1995), p. 157Google Scholar
  4. W.F. Bottke, A. Morbidelli, R. Jedicke, J.-M. Petit, H.F. Levison, P. Michel, T.S. Metcalfe, Icarus 156, 399–433 (2002)ADSCrossRefGoogle Scholar
  5. E. Cardiff, B.R. Pomeroy, J. P. Matchett, in Proceedings of the Space Resources Roundtable VII: LEAG Conference on Lunar Exploration, League City, TX, ed. by G. Taylor, S. Mackwell, J. Garvin, LPI Contribution No. 1287 (2005), p. 27Google Scholar
  6. C.R. Chapman, Earth Moon Planet. 102, 417 (2008)ADSCrossRefGoogle Scholar
  7. M.P. Chuchman, A.K. Shuaibov, L.V. Mesarosh, Tech. Phys. 56, 117 (2011)CrossRefGoogle Scholar
  8. M. Delbo, A. Dell’Oro, A.W. Harris, S. Mottola, M. Mueller, Icarus 190, 236 (2007)ADSCrossRefGoogle Scholar
  9. M. Elvis, J. McDowell, J.A. Hoffman, R.P. Binzel, Planet. Space Sci. 59, 1408 (2011)ADSCrossRefGoogle Scholar
  10. D. Fargion, Chin. J. Astron. Astrophys. 8, 399 (2008)Google Scholar
  11. S.P. Gong, J.F. Li, Y.F. Gao, Res. Astron. Astrophys. 11, 205 (2011)ADSCrossRefGoogle Scholar
  12. R. Kahle, E. Kührt, G. Hahn, J. Knollenberg, Aerospace Sci. Technol. 10, 256 (2006a)CrossRefGoogle Scholar
  13. R. Kahle, G. Hahn, E. Kührt, Icarus 182, 482 (2006b)ADSCrossRefGoogle Scholar
  14. H.U. Keller, W.A. Delamere, W.F. Huebner, H.J. Reitsema, H.U. Schmidt, F.L. Whipple, K. Wilhelm, W. Kurdt, R. Kramm, N. Thomas, C. Arpigny, C. Barbieri, R.M. Bonnet, S. Cazes, M. Coradini, C.B. Cosmovici, D.W. Hughes, C. Jamar, D. Malaise, K. Shmidt, W.K.H. Shmidt, P. Seige, Astron. Astrophys. 187, 807 (1987)ADSGoogle Scholar
  15. F. Kitajima, M. Kotsugi, T. Ohkochi, H. Naraoka, Y. Ishibashi, M. Abe, A. Fujimura, R. Okazaki, T. Yada, T. Nakamura, T. Noguchi, K. Nagao, A. Tsuchiyama, T. Mukai, S.A. Sandford, T. Okada, K. Shirai, M. Ueno, M. Yoshikawa, J. Kawaguchi, in Proceedings of 42nd Lunar and Planetary Science Conference, March 711, 2011, Woodlands, Texas. LPI Contribution No. 1608 (2011), p. 1855Google Scholar
  16. I.V. Lomakin, M.B. Martynov, V.G. Pol’, A.V. Simonov, Solar System Res. 45, 577 (2011)ADSCrossRefGoogle Scholar
  17. E.T. Lu, S.G. Love, Nature 438, 177 (2005)ADSCrossRefGoogle Scholar
  18. C. Maddock, J.P. Sanchez Cuartielles, M. Vasile, G. Radice, in Proceedings of the AIP Conference on New Trends in Astrodynamics and Applications III, 1618 August 2006, vol. 886 (Princeton, New Jersey 2007), p. 303Google Scholar
  19. G.L. Matloff, L. Leng, T. Le, in 3rd Annual Meteoritical Society Meeting, July 2630, 2010, New York, New York. Meteorit. Planet. Sci. Suppl. id.5004 (2010)Google Scholar
  20. M. Mueller, D.E. Trilling, J.L. Hora, A.W. Harris, L.A.M. Benner, B. Bhattacharya, W.F. Bottke, S. Chesley, M. Delbó, J.P. Emery, G. Fazio, A.R. Hagen, J.L. Kistler, A. Mainzer, M. Mommert, A. Morbidelli, B. Penprase, H.A. Smith, T.B. Spahr, J.A. Stansberry, C.A. Thomas, in Abstract EPSC-DPS Joint Meeting, 27 October 2011, Nantes, France, (2011), p. 839Google Scholar
  21. A. Mainzer, T. Grav, J. Bauer, J. Masiero, R.S. McMillan, R.M. Cutri, R. Walker, E. Wright, P. Eisenhardt, D.J. Tholen, T. Spahr, R. Jedicke, L. Denneau, E. Debaun, D. Elsbury, T. Gautier, S. Gomillion, E. Hand, W. Mo, J. Watkins, A. Wilkins, G.L. Bryngelsom, A. Del Pino Molina, S. Desai, M. Gomes Camus, S.L. Hidalgo, I. Konstantopoulos, J.A. Larsen, C. Maleszewski, M.A. Malkan, J.-C. Mauduit, B.L. Mullan, E.W. Olszewski, J. Pforr, A. Saro, J.V. Scotti, L.H. Wasserman, Ap. J. 743, 156 (2011)ADSCrossRefGoogle Scholar
  22. C.R. McInnes, Planet. Space Sci. 52, 587 (2004)ADSCrossRefGoogle Scholar
  23. H.J. Melosh, I.V. Nemchinov, Nature 366, 21 (1993)ADSCrossRefGoogle Scholar
  24. Ph. Nicolai, V.T. Tikhonchuk, A. Kasperczuk, T. Pisarczyk, S. Borodziuk, K. Rohlena, J. Ullschmied, Astrophys. Space Sci. 307, 87 (2007)ADSCrossRefGoogle Scholar
  25. J.-Y. Prado, A. Perret, O. Boisard, Adv. Space Res. 48, 1911 (2011)ADSCrossRefGoogle Scholar
  26. J. P. Sanchez Cuartielles, C. Colombo, M. Vasile, G. Radice, in Proceedings of AIP Conference on New Trends in Astrodynamics and Applications III, 1618 August 2006, Princeton, New Jersey (USA), vol. 886 (2007), p. 317Google Scholar
  27. M. Sauerborn, A. Neumann, W. Seboldt, B. Diekmann, in Proceedings of 35th COSPAR Scientific Assembly, 1825 July 2004, Paris, France (2004), p. 2975Google Scholar
  28. H. Takeuchi, H. Miyamoto, S. Maruyama, in Proceedings of 41st Lunar and Planetary Science Conference on March 15, 2010, Woodlands, Texas. LPI Contribution No. 1533 (2010), p. 1578Google Scholar
  29. G.N. Tiwari, in Solar Energy. Fundamentals, design, modelling and applications, (CRC Press, Boca Raton, London, New York, Washington, DC, 2000) p. 254Google Scholar
  30. M. Vasile, Commun. Nonlinear Sci. Numer. Simul. 14, 4139 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. M. Vasile, C.A. Maddock, Celest. Mechanic. Dynam. Astron. 107, 265 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. V.P. Vasylyev, in Proceedings of SPIE International Conference on Highly Innovative Space Telescope Concepts, ed. by H.A. MacEwen, August 22–28, 2002, vol. 4849 (Kona, Hawaii, 2002), p. 372Google Scholar
  33. S.V. Vasylyev, V.P. Vasylyev, in Proceedings of 40th ASES National Solar Conference (SOLAR 2011), May 1720, 2011, Raleigh, North Carolina, (Curran Associates, Inc., 2012) p. 221Google Scholar
  34. E.L. Walton, J.G. Spray, Meteorit. Planet. Sci. 39(Supl), A157 (2003)ADSCrossRefGoogle Scholar
  35. S.D. Wolters, S.F. Green, MNRAS 400, 204 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.SVV Technology Innovations, Inc.SacramentoUSA

Personalised recommendations