Advertisement

Earth, Moon, and Planets

, 106:15 | Cite as

Diurnal Habitability of Frozen Worlds

  • W. von Bloh
  • K. J. Kossacki
  • S. Franck
  • C. Bounama
Article
  • 83 Downloads

Abstract

In this work we discuss effects allowing local habitability of some extraterrestrial planets of low average surface temperatures. We analyze the problem of diurnal and seasonal changes of temperature and biological productivity at different locations on a hypothetical Earth-like planet. We have found, that under some circumstances the temperature may locally rise well above the average value, allowing periods of enhanced biological activity. In this way, bioproductivity can become periodically possible on a planet that has an average temperature clearly below 0°C. Such thermal conditions are encountered on Mars (Smith et al. in Science 306:1750–1753, 2004) generally considered as inhabitable. In reality, an appropriate temperature is not sufficient for habitability. The presence of liquid water at the considered location is also necessary. We discuss how temperature oscillations affect habitability in the framework of a conceptual model. We find that the considered effect of diurnal and seasonal temperature oscillations can extend the outer boundary of the habitable zone up to 2 AU, while global average temperatures are below 0°C for heliocentric distances R h > 1.12 AU (dry atmosphere, low CO2 pressure), or R h > 1.66 AU (humid atmosphere, high CO2 pressure).

Keywords

Extrasolar planets Geodynamics Habitable zone Obliquity Biological productivity 

References

  1. J.P. Beaulieu et al., Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature 439, 437–440 (2006)CrossRefADSGoogle Scholar
  2. J.W. Chamberlain, Changes in the planetary heat balance with chemical changes in air. Planet. Space Sci. 28, 1011–1018 (1980)CrossRefADSGoogle Scholar
  3. F. Forget, R.T. Pierrehumbert, Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278, 1273–1276 (1997)CrossRefADSGoogle Scholar
  4. S. Franck, K. Kossacki, C. Bounama, Modelling the global carbon cycle for the past and future evolution of the earth system. Chem. Geol. 159, 305–317 (1999)CrossRefGoogle Scholar
  5. S. Franck, A. Block, W. von Bloh, C. Bounama, H.-J. Schellnhuber, Y. Svirezhev, Reduction of biosphere life span as a consequence of geodynamics. Tellus 52B, 94–107 (2000a)CrossRefGoogle Scholar
  6. S. Franck, W. von Bloh, C. Bounama, M. Steffen, D. Schönberner, H.-J. Schellnhuber, Determination of habitable zones in extrasolar planetary systems: where are Gaia’s sisters? J. Geophys. Res. 105 (E1), 1651–1658 (2000b)CrossRefADSGoogle Scholar
  7. S. Franck, K.J. Kossacki, W. von Bloh, C. Bounama, Long-term evolution of the global carbon cycle: historic minimum of global surface temperature at present. Tellus 54B, 325–343 (2002)CrossRefGoogle Scholar
  8. S. Franck, M. Cuntz, W. von Bloh, C. Bounama, The habitable zone of Earth-mass planets around 47 UMa: results for land and water worlds. Int. J. Astrobiol. 2: 35–39 (2003)CrossRefGoogle Scholar
  9. D.A. Gilichinski, in Permafrost Model of Extraterrestrial Habitat, ed. by G. Horneck, C. Baumstark-Khan. Astrobiology, (Springer, Berlin, 2002), pp. 125–142Google Scholar
  10. P.F. Hoffman, D.P. Schrag, The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14, 129–155 (2002)CrossRefGoogle Scholar
  11. J.F. Kasting, D.P. Whitmire, R.T. Reynolds, R. T. habitable zones around main sequence stars. Icarus 101, 108–128 (1993)CrossRefADSGoogle Scholar
  12. K.J. Kossacki, W.J. Markiewicz, Martian seasonal CO2 ice in polygonal troughs in southern polar region: role of the distribution of surface H2O ice. Icarus 160, 73–85(2002)CrossRefADSGoogle Scholar
  13. K.J. Kossacki, W.J. Markiewicz, M.D. Smith, Surface temperature of Martian regolith with polygonal features: influence of the subsurface water ice. Planet. Space Sci. 51, 569–580 (2003)CrossRefADSGoogle Scholar
  14. K.J. Kossacki, W.J. Markiewicz, M.D. Smith, D. Page, J. Murray, Possible remnants of a frozen mud lake in southern Elysium. Mars. Icarus 181, 363–374 (2006)CrossRefADSGoogle Scholar
  15. G. Marcy, R.P. Butler, D. Fischer, S. Vogt, J.T. Wright, C.G. Tinney, H.R.A. Jones, Observed properties of exoplanets: masses, orbits, and metallicities. Prog. Theoretic. Phys. Suppl. 158, 24–42 (2005)CrossRefADSGoogle Scholar
  16. S.N. Raymond, T.R. Quinn, J.I. Lunine, Making other Earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168, 1–17 (2004)CrossRefADSGoogle Scholar
  17. E.J. Rivera, J.J. Lissauer, R.P. Butler, G.W. Marcy, S.S. Vogt, D.A. Fischer, T.M. Brown, G. Laughlin, G.W. Henry, A \(\sim7.5\hbox{M}_\oplus\) planet orbiting the nearby star, GJ 876. Astrophys. J. 634, 625–640 (2005)CrossRefADSGoogle Scholar
  18. F. Selsis, J.F. Kasting, B. Levrard, J. Paillet, I. Ribas, X. Delfosse, Habitable planets around the star Gliese 581? Astron. Astrophys. 476, 1373–1387 (2007)CrossRefADSGoogle Scholar
  19. M.D. Smith, M.J. Wolff, M.T. Lemmon, N. Spanovich, D. Banfield, C.J. Budney, R.T. Clancy, A. Ghosh, G.A. Landis, P. Smith, B. Whitney, P.R. Christensen, S.W. Squyres, First atmospheric science results from the Mars exploration rovers Mini-TES. Science 306, 1750–1753 (2004)CrossRefADSGoogle Scholar
  20. S. Udry, X. Bonfils, X. Delfosse, T. Forveille, M. Mayor, C. Perrier, F. Bouchy, C. Lovis, F. Pepe, D. Queloz, J.-L. Bertaux, The HARPS search for southern extra-solar planets. XI super-Earths (5 & \(8\hbox{M}_\oplus\)) in a 3-planet system. Astron. Astrophys. 469, L43–L47 (2007)CrossRefADSGoogle Scholar
  21. D. Valencia, R.J. O’Connell, D. Sasselov, Internal structure of massive terrestrial planets. Icarus 181, 545–554 (2006)CrossRefADSGoogle Scholar
  22. W. von Bloh, C. Bounama, M. Cuntz, S. Franck, The habitability of super-Earths in Gliese 581. Astron. Astrophys. 476, 1365–1371 (2007)CrossRefADSGoogle Scholar
  23. D. Wagner, E. Spieck, E. Bock, E.-M. Pfeiffer, in Microbial Life in Terrestrial Permafrost: Methanogenesis and Nitrification in Gelisols as Potentials for Exobiological Processes, ed. by G. Horneck, C. Baumstark-Khan. Astrobiology, (Springer, Berlin, 2002), pp. 143–159Google Scholar
  24. G.W. Wetherill, The formation and habitability of extra-solar planets. Icarus 119, 219–238 (1996)CrossRefADSGoogle Scholar
  25. G.E. Williams, Late Precambrian glacial climate and the Earth’s obliquity. Geol. Mag. 112, 441–444 (1975)CrossRefGoogle Scholar
  26. D.M. Williams, The stability of habitable planetary environments, Ph.D. thesis. Pennsylvania State University, University Park (1998)Google Scholar
  27. D.M. Williams, D. Pollard, Earth-like worlds on eccentric orbits: excursions beyond the habitable zone. Int. J. Astrobiol. 1, 61–69 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • W. von Bloh
    • 1
  • K. J. Kossacki
    • 2
  • S. Franck
    • 1
  • C. Bounama
    • 1
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Institute of Geophysics of Warsaw UniversityWarsawPoland

Personalised recommendations