Advertisement

Earth, Moon, and Planets

, 106:1 | Cite as

A New Reference Equipotential Surface, and Reference Ellipsoid for the Planet Mars

  • A. A. Ardalan
  • R. Karimi
  • E. W. Grafarend
Article

Abstract

Using the shape model of Mars GTM090AA in terms of spherical harmonics complete to degree and order 90 and gravitational field model of Mars GGM2BC80 in terms of spherical harmonics complete to degree and order 80, both from Mars Global Surveyor (MGS) mission, the geometry (shape) and gravity potential value of reference equipotential surface of Mars (Areoid) are computed based on a constrained optimization problem. In this paper, the Areoid is defined as a reference equipotential surface, which best fits to the shape of Mars in least squares sense. The estimated gravity potential value of the Areoid from this study, i.e. W 0 = (12,654,875 ± 69) (m2/s2), is used as one of the four fundamental gravity parameters of Mars namely, {W 0, GM, ω, J 20}, i.e. {Areoid’s gravity potential, gravitational constant of Mars, angular velocity of Mars, second zonal spherical harmonic of gravitational field expansion of Mars}, to compute a bi-axial reference ellipsoid of Somigliana-Pizzetti type as the hydrostatic approximate figure of Mars. The estimated values of semi-major and semi-minor axis of the computed reference ellipsoid of Mars are (3,395,428 ± 19) (m), and (3,377,678 ± 19) (m), respectively. Finally the computed Areoid is presented with respect to the computed reference ellipsoid.

Keywords

Areoid Areoid potential Reference ellipsoid Constrained optimization problem Lagrange method 

Notes

Acknowledgments

The authors would like to kindly acknowledge the constructive comments and corrections of the anonymous reviewer which helped to significantly improve initial version of the paper. Besides, the authors would like to thank the University of Tehran for the financial support.

References

  1. A.A. Ardalan, E.W. Grafarend, Somigliana-Pizzetti gravity: the international gravity formula accurate to the sub-nanoGal level. J. Geod. 75, 424–437 (2001). doi: 10.1007/PL00004005 Google Scholar
  2. M.E. Davies, V.K. Abalakin, A. Brahic, M. Bursa, B.H. Chovitz, J.H. Lieske, P.K. Seidelmann, A.T. Sinclair, Y.S. Tjuflin, Report of the IAU/IAG/COSPAR working group on cartographic coordinates and rotational elements of the planets and satellites: 1991. Celestial Mech. 53, 377–397 (1992). doi: 10.1007/BF00051818 Google Scholar
  3. T. Duxbury, R. Kirk, B. Archinal, G. Neumann, Mars Geodesy/Cartography working group recommendations on Mars cartographic constants and coordinate systems, in Proceedings of the Symposium on Geopotential Theory, Processing and Applications (2000, Ottawa, Ontario) (2002), p. 4Google Scholar
  4. W.M. Folkner, C.F. Yoder, D.N. Yuan, E.M. Standish, R. Preston, Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars pathfinder. Science 278, 1749–1751 (1997). doi: 10.1126/science.278.5344.1749 Google Scholar
  5. C.F. Gauss, Bestimmung des Breitenunterschiedes zwischen den Sternwarten von Göttingen und Altona (Vandenhoek und Ruprecht, Göttingen, 1828)Google Scholar
  6. E.W. Grafarend, A.A. Ardalan, World Geodetic datum 2000. J. Geod. 73, 611–623 (1999)zbMATHCrossRefADSGoogle Scholar
  7. W.A. Heiskanen, H. Mortiz, in Physical Geodesy, ed. by W.H. Freeman (Institute of Physical Geodesy, Technical University of Graz, Austria, 1967)Google Scholar
  8. A.S. Konopliv, C.F. Yoder, E.M. Standish, D.N. Yuan, W.L. Sjogren, A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182, 23–50 (2006)CrossRefADSGoogle Scholar
  9. F.G. Lemoine, D.E. Smith, D. Rowlands, M. Zuber, G.A. Neumann, D.S. Chinn, D. Pavlis, An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor. J. Geophys. Res. 106, 23359–23376 (2001)CrossRefADSGoogle Scholar
  10. J.B. Listing, Über unsere jetzige Kenntnis der Gestalt und Größe der Erde (Dietrichsche Verlagsbuchhandlung, Göttingen, 1873)Google Scholar
  11. J.C. Marty, G. Balmino, J. Duron, P. Rosenblatt, S.L. Maistre, A. Rivoldini, V. Dehant, T.V. Hoolst, Martian gravity field model and its time variations from MGS and Odyssey data. Planet. Space Sci. 57, 350–363 (2009)CrossRefADSGoogle Scholar
  12. D.E. Smith, M. Zuber, S. Solomon, R. Phillips, J. Head, J. Garvin, W. Banerdt, D. Muhleman, G.H. Pettengill, G. Neumann, F.G. Lemoine, J. Abshire, O. Aharonson, C. Brown, S. Hauck, A. Ivanov, P. McGovern, H. Zwally, T. Duxbury, The global topography of Mars and implications for surface evolution. Science 284, 1495–1503 (1999a)CrossRefADSGoogle Scholar
  13. D.E. Smith, W.L. Sjogren, G.L. Tyler, G. Balmino, F.G. Lemoine, A.S. Konopliv, The gravity field of Mars: results from Mars global surveyor. Science 286, 94–97 (1999b)CrossRefADSGoogle Scholar
  14. P. Vanicek, E. Krakiwsky, Geodesy the Concept (Elsevier, Amsterdam, 1986)Google Scholar
  15. D.N. Yuan, W.L. Sjogren, A.S. Konopliv, A.B. Kucinskas, Gravity field of Mars: a 75th degree and order model. J. Geophys. Res. 106, 23377–23401 (2001)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Surveying and Geomatics Engineering, Center of Excellence of Geomatics Engineering and Disaster Prevention, College of EngineeringUniversity of TehranTehranIran
  2. 2.Department of GeodesyStuttgart UniversityStuttgartGermany

Personalised recommendations