Earth, Moon, and Planets

, Volume 105, Issue 2–4, pp 343–349

A Multi-Wavelength Simultaneous Study of the Composition of the Halley Family Comet 8P/Tuttle

  • E. Jehin
  • D. Bockelée-Morvan
  • N. Dello Russo
  • J. Manfroid
  • D. Hutsemékers
  • H. Kawakita
  • H. Kobayashi
  • R. Schulz
  • A. Smette
  • J. Stüwe
  • M. Weiler
  • C. Arpigny
  • N. Biver
  • A. Cochran
  • J. Crovisier
  • P. Magain
  • H. Rauer
  • H. Sana
  • R. J. Vervack
  • H. Weaver
  • J.-M. Zucconi
Article
  • 76 Downloads

Abstract

We report on simultaneous optical and infrared observations of the Halley Family comet 8P/Tuttle performed with the ESO Very Large Telescope. Such multi-wavelength and coordinated observations are a good example of what can be done to support space missions. From high resolution optical spectroscopy of the CN (0,0) 388 nm and NH2 (0,9,0) 610 nm bands using UVES at UT2 we determined 12C/13C = 90 ± 10 and 14N/15N = 150 ± 20 in CN and we derived a nuclear spin temperature of NH3 of 29 ± 1 K. These values are similar to those found in Oort-Cloud and Jupiter Family comets. From low resolution long slit spectroscopy with FORS1 at UT2 we determined the CN, C3 and C2 production rates and the parent and daughter scale lengths up to 5.2 105 km tailward. From high resolution IR spectroscopy with CRIRES at UT1 we measured simultaneously the production rates and mixing ratios of H2O, HCN, C2H2, CH4, C2H6, and CH3OH.

Keywords

Comets 8P/Tuttle Spectroscopy Isotope ratios NH2 OPR Production rates Mixing ratios 

References

  1. M. A’Hearn et al., Icarus 118, 223 (1995). doi:10.1006/icar.1995.1190 CrossRefADSGoogle Scholar
  2. C. Arpigny et al., Science 301, 1522 (2003). doi:10.1126/science.1086711 CrossRefADSGoogle Scholar
  3. N. Biver et al., in Asteroids, Comets, Meteors, LPI Contribution No. 1405, Baltimore, MD, 14–18 July 2008Google Scholar
  4. D. Bockelée-Morvan, J. Crovisier, Astron. Astrophys. 151, 90 (1985)ADSGoogle Scholar
  5. H. Boehnhardt et al., Astrophys. J. 683, L71 (2008)CrossRefADSGoogle Scholar
  6. B.P. Bonev et al., Astrophys. J. 680, L61 (2008)CrossRefADSGoogle Scholar
  7. M.A. DiSanti, M.J. Mumma, Space Sci. Rev. 138, 127 (2008)CrossRefADSGoogle Scholar
  8. M. Festou et al., BAAS 30, 1089 (1998)ADSGoogle Scholar
  9. N. Fray et al., P&SS 53, 1243 (2005)ADSGoogle Scholar
  10. J. Helbert et al., Astron. Astrophys. 442, 1107 (2005)CrossRefADSGoogle Scholar
  11. W.F. Huebner et al., Ap&SS 195, 1 (1992)CrossRefADSGoogle Scholar
  12. H. Kawakita et al., Science 294, 1089 (2001)CrossRefADSGoogle Scholar
  13. J.-M. Zucconi, M. Festou, Astron. Astrophys. 150, 180 (1985)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • E. Jehin
    • 1
  • D. Bockelée-Morvan
    • 2
  • N. Dello Russo
    • 3
  • J. Manfroid
    • 1
  • D. Hutsemékers
    • 1
  • H. Kawakita
    • 5
  • H. Kobayashi
    • 5
  • R. Schulz
    • 7
  • A. Smette
    • 4
  • J. Stüwe
    • 8
  • M. Weiler
    • 2
  • C. Arpigny
    • 1
  • N. Biver
    • 2
  • A. Cochran
    • 6
  • J. Crovisier
    • 2
  • P. Magain
    • 1
  • H. Rauer
    • 10
  • H. Sana
    • 4
  • R. J. Vervack
    • 3
  • H. Weaver
    • 3
  • J.-M. Zucconi
    • 9
  1. 1.Institut d’Astrophysique et de Géophysique de l’Université de LiègeLiègeBelgium
  2. 2.LESIAMeudonFrance
  3. 3.The Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  4. 4.ESOSantiagoChile
  5. 5.Kyoto Sangyo UniversityKyotoJapan
  6. 6.Department of Astronomy and McDonald ObservatoryUniversity of TexasAustinUSA
  7. 7.ESA/RSSD, ESTECNoordwijkThe Netherlands
  8. 8.Leiden ObservatoryLeidenThe Netherlands
  9. 9.Observatoire de BesançonBesançonFrance
  10. 10.Institute of Planetary Research, DLRBerlinGermany

Personalised recommendations