Earth, Moon, and Planets

, Volume 104, Issue 1–4, pp 211–226 | Cite as

The Remote Equatorial Nighttime Observatory of Ionospheric Regions Project and the International Heliospherical Year

  • Jonathan J. Makela
  • John W. Meriwether
  • Jose P. Lima
  • Ethan S. Miller
  • Shaun J. Armstrong


We describe a new suite of instruments planned for deployment to Cape Verde as part of the International Heliospherical Year. The Remote Equatorial Nighttime Observatory of Ionospheric Regions (RENOIR) project consists of a bistatic Fabry–Perot interferometer system, an all-sky imaging system, a dual-frequency Global Positioning System (GPS) receiver, and an array of single-frequency GPS scintillation monitors. This instrumentation will allow for studying the low-latitude thermosphere/ionosphere (TI) system in great detail. Investigations to be conducted using this instrumentation while in Cape Verde include studying equatorial irregularity processes, the effects of neutral winds and gravity waves on irregularity development, the midnight temperature maximum, and ion-neutral coupling in the nighttime TI system. Initial observations from the RENOIR instrumentation during pre-deployment testing at the Urbana Atmospheric Observatory are presented, as is the deployment scenario for the project in Cape Verde.


Ionosphere Thermosphere Neutral winds Airglow measurements 



The equipment involved in RENOIR was funded through a DURIP award to the University of Illinois at Urbana-Champaign through ONR contract N00014-06-1-0755. Work at Clemson University is funded through award NNX07AM32G from the IHY program at NASA. Work at the University of Illinois at Urbana-Champaign is funded through subcontract CU8000028589 from Clemson University.


  1. T.L. Beach, P.M. Kintner, Development and use of a GPS ionospheric scintillation monitor. IEEE Trans. Geosci. Remote Sens. 39, 918–928 (2001)CrossRefADSGoogle Scholar
  2. H.G. Booker, H.W. Wells, Scattering of radio waves by the F-region of the ionosphere. J. Geophys. Res. 43, 249–256 (1938)CrossRefADSGoogle Scholar
  3. R.G. Burnside, F.A. Herrero, J.W. Meriwether, J.C.G. Walker, Optical observations of thermospheric dynamics at Arecibo. J. Geophys. Res. 86, 5532–5540 (1981)CrossRefADSGoogle Scholar
  4. M. Colerico, M. Mendillo, The current state of investigations regarding the thermospheric midnight temperature maximum (MTM). J. Atmos. Sol. Terr. Phys. 64, 1361–1369 (2002)CrossRefADSGoogle Scholar
  5. M. Colerico, M. Mendillo, D. Nottingham, J. Baumgardner, J. Meriwether, J. Mirick, B. Reinish, J. Scali, C. Fesen, Coordinated measurements of F-region dynamics related to the thermospheric midnight temperature maximum. J. Geophys. Res. 101, 26783–26793 (1996)CrossRefADSGoogle Scholar
  6. M. Colerico, M. Mendillo, C.G. Fesen, J.W. Meriwether, Comparative investigations into the equatorial electrodynamics and low to mid latitude coupling of the thermosphere-ionosphere system in the American sector. Ann. Geophys. 24, 503–513 (2006)ADSCrossRefGoogle Scholar
  7. J.W. Dungey, Convective diffusion in the equatorial F-region. J. Atmos. Terr. Phys. 9, 304–310 (1956)CrossRefGoogle Scholar
  8. J.T. Emmert, B.G. Fejer, D.P. Sipler, Climatology and latitudinal gradients of quiet time thermospheric neutral winds over Millstone Hill from Fabry–Perot interferometer measurements. J. Geophys. Res. 108(A5), 1196 (2003). doi: 10.1029/2002JA009765 CrossRefGoogle Scholar
  9. C.G. Fesen, Simulations of the low-latitude midnight temperature maximum. J. Geophys. Res. 101, 26863–26874 (1996)CrossRefADSGoogle Scholar
  10. R.M. Harper, Nighttime meridional neutral winds near 350 km at low to mid-latitudes. J. Atmos. Terr. Phys. 35, 2023–2034 (1973)CrossRefADSGoogle Scholar
  11. P.B. Hays, R.G. Roble, A technique for recovering doppler line profiles from Fabry–Perot interferometer fringes of very low intensity. Appl. Opt. 10, 193 (1971)CrossRefADSGoogle Scholar
  12. F.A. Herrero, H.G. Mayr, N.W. Spencer, Latitudinal (seasonal) variations in the thermospheric midnight temperature maximum: a tidal analysis. J. Geophys. Res. 88, 7225–7235 (1983)CrossRefADSGoogle Scholar
  13. M.C. Kelley, The Earths ionosphere (Academic Press, San Diego, 1989)Google Scholar
  14. M.C. Kelley, J.J. Makela, B.M. Ledvina, P.M. Kintner, Observations of equatorial spread-F from Haleakala, Hawaii. Geophys. Res. Lett. 29(20) (2002). doi: 10.1029/2002GL015509
  15. T.L. Killeen, P.B. Hays, Doppler line profile analysis for a multichannel Fabry–Perot interferometer. Appl. Opt. 23(4), 612–620 (1984)ADSCrossRefGoogle Scholar
  16. P.M. Kintner, H. Kil, T.L. Beach, E.R. de Paula, Fading timescales associated with GPS signals and potential consequences. Radio Sci. 36, 731–744 (2001)CrossRefADSGoogle Scholar
  17. P.M. Kintner, B.M. Ledvina, E.R. de Paula, I.J. Kantor, Size, shape, orientation, speed, and duration of GPS equatorial anomaly scintillations. Radio Sci. 39, 2012 (2004). doi: 10.1029/2003RS002878 CrossRefADSGoogle Scholar
  18. E. Kudeki, A. Akgiray, M. Milla, J. Chau, D. Hysell, Equatorial spread-F initiation: post-sunset vortex, thermospheric winds, gravity waves. J. Atmos. Sol. Terr. Phys. (2007). doi: 10.1016/j.jastp.2007.04.012
  19. B.M. Ledvina, P.M. Kintner, E.R. de Paula, Understanding spaced-receiver zonal velocity estimation. J. Geophys. Res. 109, A10306 (2004). doi: 10.1029/2004JA010489 CrossRefADSGoogle Scholar
  20. R. Link, L.L. Cogger, A reexamination of the OI 6300-A nightglow. J. Geophys. Res. 93, 9883–9892 (1988)CrossRefADSGoogle Scholar
  21. J.J. Makela, A review of imaging low-latitude ionospheric irregularity processes. J. Atmos. Sol. Terr. Phys. 68(13), 1441–1458 (2006). doi: 10.1016/j.jastp.2005.04.014 CrossRefADSGoogle Scholar
  22. J.J. Makela, M.C. Kelley, Field-aligned 777.4-nm composite airglow images of equatorial plasma depletions. Geophys. Res. Lett. 30, 1442 (2003). doi: 10.1029/2003GL017106 CrossRefADSGoogle Scholar
  23. J.J. Makela, M.C. Kelley, S.A. Gonzalez, N. Aponte, R.P. McCoy, Ionospheric topography maps using multiple wavelength all-sky images. J. Geophys. Res. 106, 29161–29174 (2001)CrossRefADSGoogle Scholar
  24. T. Maruyama, N. Matuura, Longitudinal variability of annual changes in activity of equatorial spread F and plasma bubbles. J. Geophys. Res. 89, 10903–10912 (1984)CrossRefADSGoogle Scholar
  25. M. Mendillo, J. Meriwether, M. Biondi, Testing the thermospheric neutral wind suppression mechanism for day-to-day variability of equatorial spread-F. J. Atmos. Sol. Terr. Phys. 63, 3655–3664 (2001)Google Scholar
  26. G.J. Nelson, L.L. Cogger, Dynamical behavior of the nighttime ionosphere at Arecibo. J. Atmos. Terr. Phys. 33, 1711 (1971)CrossRefADSGoogle Scholar
  27. W.L. Oliver, S. Fukao, Y. Yamamoto, T. Takami, M.D. Yamanaka, M. Yamamoto, T. Nakamura, T. Tsuda, Middle and upper atmosphere radar observations of ionospheric density gradients produced by gravity wave packets. J. Geophys. Res. 99, 6321–6329 (1994)CrossRefADSGoogle Scholar
  28. W. Rideout, A. Coster, Automated GPS processing for global total electron content data. GPS Solut. 10(3), 219–228 (2006)CrossRefGoogle Scholar
  29. H. Rishbeth, Whatever happened to superrotation? J. Atmos. Sol. Terr. Phys. 64, 1351–1360 (2002)CrossRefADSGoogle Scholar
  30. K. Shiokawa, Y. Otsuka, T. Ogawa, Quasiperiodic southward moving waves in 630-nm airglow images in the equatorial thermosphere. J. Geophys. Res. 111, A06301 (2006). doi: 10.1029/2005JA011406 CrossRefGoogle Scholar
  31. D.P. Sipler, M.A. Biondi, M.E. Zipf, Vertical winds in the midlatitude thermosphere from Fabry–Perot interferometer measurements. J. Atmos. Terr. Phys. 57, 621–629 (1995)CrossRefADSGoogle Scholar
  32. N.W. Spencer, G.R. Carignan, H.G. Mayr, B.H. Neimann, R.F. Theis, L.E. Wharton, The midnight temperature maximum in the Earth’s equatorial thermosphere. Geophys. Res. Lett. 6, 444–446 (1979)CrossRefADSGoogle Scholar
  33. P.J. Sultan, Linear theory and modeling of the Rayleigh–Taylor instability leading to the occurrence of equatorial spread F. J. Geophys. Res. 101, 26875–26891 (1996)CrossRefADSGoogle Scholar
  34. B.A. Tinsley, A.B. Christensen, J. Bittencourt, H. Gouveia, P.D. Angreji, H. Takahashi, Excitation of oxygen permitted line emissions in the tropical nightglow. J. Geophys. Res. 78, 1174–1186 (1973)CrossRefADSGoogle Scholar
  35. S.L. Vadas, D.C. Fritts, Thermospheric responses to gravity waves arising from mesoscale convective complexes. J. Atmos. Sol. Terr. Phys. 66, 781–804 (2004)CrossRefADSGoogle Scholar
  36. S.L. Vadas, D.C. Fritts, Thermospheric responses to gravity waves: influences of increasing viscosity and thermal diffusivity. J. Geophys. Res. 110, D15103 (2005). doi: 10.1029/2004JD005574 CrossRefADSGoogle Scholar
  37. S.L. Vadas, D.C. Fritts, Influence of solar variability on gravity wave structure and dissipation in the thermosphere from tropospheric convection. J. Geophys. Res. 111, A10S12 (2006). doi: 10.1029/2005JA011510 CrossRefGoogle Scholar
  38. P. Vila, D. Rees, P. Merrien, E. Kone, Fabry–Perot interferometer measurements of neutral winds and F2 layer variations at the magnetic equator. Ann. Geophys. 16, 731–737 (1998)CrossRefADSGoogle Scholar
  39. K.C. Yeh, C.-H. Liu, Radio wave scintillations in the ionosphere. Proc. IEEE 70, 324–360 (1982)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jonathan J. Makela
    • 1
  • John W. Meriwether
    • 2
  • Jose P. Lima
    • 3
  • Ethan S. Miller
    • 1
  • Shaun J. Armstrong
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Physics and AstronomyClemson UniversityClemsonUSA
  3. 3.Instituto Nacional de Meteorologia e GeofísicaPraiaRepublica de Cabo Verde

Personalised recommendations