Advertisement

Earth, Moon, and Planets

, Volume 101, Issue 3–4, pp 97–125 | Cite as

The Gaia Mission: Expected Applications to Asteroid Science

  • F. Mignard
  • A. Cellino
  • K. Muinonen
  • P. Tanga
  • M. Delbò
  • A. Dell’Oro
  • M. Granvik
  • D. Hestroffer
  • S. Mouret
  • W. Thuillot
  • J. Virtanen
Article

Abstract

According to current plans of the European space agency, Gaia will be launched in 2011. By performing a systematic survey of the whole sky down to magnitude V = 20, this mission will provide a fundamental contribution in practically all branches of modern Astrophysics. Gaia will be able to survey with repeated observations spanning over 5 years several 100,000 s asteroids. It will directly measure sizes of about 1,000 objects, obtain the masses of about 100 of them, derive spin properties and overall shapes of more than 10,000 objects, yield much improved orbits and taxonomic classification for most of the observed sources. The final harvest will very likely include new discoveries of objects orbiting at heliocentric distances less than 1 AU. At the end of the mission, we will know average densities of about 100 objects belonging to all the major taxonomic classes, have a much more precise knowledge of the inventory and size and spin distributions of the population, of the distribution of taxonomic classes as a function of heliocentric distance, and of the dynamical and physical properties of dynamical families.

Keywords

Asteroids Astrometry Photometry Spectroscopy Space-based observations 

Notes

Acknowledgements

We thank the Gaia DPAC (Data Processing and Analysis Consortium) for providing several Figures of the Gaia instrumental set-up. This work is the product of many interactions and discussions among a large number of scientists (too many to be listed here) involved in the former Gaia Solar System Working Group. In particular, some parts of this paper have been improved thanks to the help of J. Berthier, J. Frouard, B. Balat.

References

  1. M.A. Barucci, A. Cellino, C. De Sanctis, M. Fulchignoni, K. Lumme, V. Zappalà, P. Magnusson, Ground-based Gaspra modelling - Comparison with the first Galileo image. Astron- Astrophys. 266, 385–394 (2002)ADSGoogle Scholar
  2. U. Bastian, M. Biermann, Astrometric meaning and interpretation of high-precision time delay integration CCD data. Astron. Astrophys. 438, 745–755 (2005)CrossRefADSGoogle Scholar
  3. W.F. Bottke, D. Vokrouhlický, D.P. Rubincam, M. Broz, in Asteroids III, ed. by W.F. Bottke, A. Cellino, P. Paolicchi and R.P. Binzel (University of Arizona Press, 2002a), pp. 395–408. Google Scholar
  4. W.F. Bottke, A. Morbidelli, R. Jedicke, J.M. Petit, H.F. Levison, P. Michel, T.S. Metcalfe, Debiased orbital and absolute magnitude distribution of the near-earth objects. Icarus. 156, 399–433 (2002b)CrossRefADSGoogle Scholar
  5. D.T. Britt, D. Yeomans, K. Housen, G. Consolmagno, in Asteroids III, ed. by W.F. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (University of Arizona Press, 2002), pp. 485–500Google Scholar
  6. E. Bowell, J. Virtanen, K. Muinonen, A. Boattini, in Asteroids III, ed. by W.F. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (University of Arizona Press, 2002), pp. 27–45Google Scholar
  7. S.J. Bus, R.P. Binzel, Phase II of the small main-belt asteroid spectroscopic survey: a feature-based taxonomy. Icarus. 158, 146–177 (2002)CrossRefADSGoogle Scholar
  8. S.J. Bus, F. Vilas, M.A. Barucci, Visible-wavelength spectroscopy of asteroids, in Asteroids III, eds by W.F. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (University of Arizona Press, Tucson, 2002), pp. 169–182Google Scholar
  9. A. Cellino, S.J. Bus, A. Doressoundiram, D. Lazzaro, in Asteroids III, ed. by W.F. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (University of Arizona Press, 2002), pp. 633–644Google Scholar
  10. A. Cellino, M. Delbò, V. Zappalà, A. Dell’Oro, P. Tanga, Rotational properties of asteroids from GAIA disk-integrated photometry: a ‘‘Genetic’’ algorithm. Adv. Space Res., 38, 2000–2005 (2006)CrossRefADSGoogle Scholar
  11. J. Chapront, M. Chapront-Touzé, G. Francou, A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements. Astron. Astrophys. 387, 700–709 (2002)CrossRefADSGoogle Scholar
  12. A. Dell’Oro, A. Cellino, Asteroid sizes from Gaia observations, in Proceedings of the Symposium Three Dimensional Universe with Gaia (ESA SP-576), p. 289 (2005)Google Scholar
  13. J. Durech, T. Grav, R. Jedicke, L. Denneau, M. Kaasalainen, Asteroid models from the Pan-STARRS photometry. Earth Moon Planet. 97(3–4), 179–187 (2006)ADSCrossRefGoogle Scholar
  14. P. Farinella, Ch. Froeschlé, C. Froeschlé, R. Gonczi, G. Hahn, A. Morbidelli, G.B. Valsecchi, Asteroids falling onto the Sun, Nature, 371, 315–317 (1994)CrossRefADSGoogle Scholar
  15. J.J. Gilvary, Phys. Rev. 89, 1046 (1953)CrossRefADSGoogle Scholar
  16. M. Granvik, K. Muinonen, Asteroid identification at discovery, Icarus. 179, 109–127 (2005)CrossRefADSGoogle Scholar
  17. M. Granvik, K. Muinonen, Near-earth object identification over apparitions using n-body ranging, in Proceedings of IAU Symposium #236: “Near Earth Objects, our Celestial Neighbors: Opportunity and Risk” (American Astronomical Society, DPS meeting #39, #50.11, 2006)Google Scholar
  18. M. Granvik, K. Muinonen, L. Jones, B. Bhattacharya, M. Delbo, L. Saba, A. Cellino, E. Tedesco, D. Davis, V. Meadows, Linking Large-Parallax Spitzer-CFHT-VLT observations of asteroids. Icarus 192(2), 475–490 (2006)CrossRefADSGoogle Scholar
  19. D. Hestroffer, F. Vachier, B. Balat, Orbit determination of binary asteroids. Earth Moon Planet. 97, 245–260 (2005)CrossRefADSGoogle Scholar
  20. J.L. Hilton, in Asteroids III, ed. by W.F. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (University of Arizona Press, 2002), pp. 103–112Google Scholar
  21. M. Kaasalainen, Physical models of large number of asteroids from calibrated photometry sparse in time. Astron. Astrophys. 422, L39-L42 (2004)CrossRefADSGoogle Scholar
  22. M. Kaasalainen, S. Mottola, M. Fulchignoni, in Asteroids III, ed. by W.F. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (University of Arizona Press, 2002), 139Google Scholar
  23. L. Lindegren, A three-step procedure for deriving positions, proper motions, and Parallaxes of stars observed by scanning great circles. Technical Note, Lund Observatory, Oct 1976. (1976)Google Scholar
  24. W.J. Merline, S.J. Weidenschilling, D.D. Durda, J.L. Margot, P. Pravec, A.D. Storrs, in Asteroids III, ed. by W.F. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (University of Arizona Press, 2002), pp. 289–314Google Scholar
  25. P. Michel, V. Zappalà, A. Cellino, P. Tanga, Estimated abundance of atens and asteroids evolving on orbits between earth and sun. Icarus. 143, 421–424 (2000)CrossRefADSGoogle Scholar
  26. K. Muinonen, E. Bowell, Asteroid orbit determination using Bayesian probabilities, Icarus. 104, 255 (1993)CrossRefADSGoogle Scholar
  27. K. Muinonen, J. Virtanen, E. Bowell, Collision probability for earth-crossing asteroids using orbital ranging, CMDA 81, 93–101 (2001)MATHADSGoogle Scholar
  28. K. Muinonen, J. Virtanen, G. Granvik, T. Laakso, Asteroid orbits with Gaia: inversion and prediction. in Proceedings of the Symposium Three Dimensional Universe with Gaia (ESA SP-576), pp. 223–230 (2005)Google Scholar
  29. K. Muinonen, J. Virtanen, M. Granvik, T. Laakso, Asteroid orbits using phase-space volumes of variation, MNRAS, 368, 809–818 (2006)CrossRefADSGoogle Scholar
  30. I.I. Shapiro, W.B. Smith, M.E. Ash, S. Herrick, General relativity and the orbit of Icarus, Astron. J. 76, 588 (1971)CrossRefADSGoogle Scholar
  31. G. Sitarski, On the relativistic motion of (1566) Icarus, Astron. J. 104, 1226–1229 (1992)CrossRefADSGoogle Scholar
  32. M. Standish, Linking the dynamical reference frame to the ICRF, Highlights Astron. 11, 310 (1998)ADSGoogle Scholar
  33. M. Standish, A. Fienga, Accuracy limit of modern ephemerides imposed by the uncertainties in asteroid masses. Astron. Astrophys. 384, 322–328 (2002)CrossRefADSGoogle Scholar
  34. J. Torppa, M. Kaasalainen, T. Michalowsky, T. Kwiatkowsky, A. Kryszczynska, P. Denchev, R. Kowalsky, Shapes and rotational properties of thirty asteroids from photometric data. Icarus, 164, 346–383 (2003)CrossRefADSGoogle Scholar
  35. J. Torppa, K. Muinonen, Statistical inversion of Gaia photometry for asteroid spins and shapes. in Proceedings of the Symposium Three Dimensional Universe with Gaia (ESA SP-576), pp. 321–324 (2005)Google Scholar
  36. F. van Leeuwen, The HIPPARCOS mission, Space Sci. Rev. 81, 201–412 (1997)CrossRefADSGoogle Scholar
  37. F. van Leeuwen, Rights and wrongs of the Hipparcos data. A critical quality assessment of the Hipparcos catalogue. Astron. Astrophys. 439, 805–822 (2005)CrossRefADSGoogle Scholar
  38. J. Virtanen, K. Muinonen, E. Bowell, Statistical ranging of asteroid orbits. Icarus 154, 412 (2001)CrossRefADSGoogle Scholar
  39. J. Virtanen, K. Muinonen, F. Mignard, Asteroid orbits with Gaia: simulated examples. In Proceedings of the Symposium Three Dimensional Universe with Gaia (ESA SP-576), pp. 325–328. (2005)Google Scholar
  40. C. Will, The confrontation between general relativity and experiment, Living Rev Relativity, 9, 3 (2006)ADSGoogle Scholar
  41. V. Zappalà, A. Cellino, in GAIA: an european space project, ed. by O. Bienaymé, C. Turon, EAS Publications Series vol. 2, p. 343 (2002)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • F. Mignard
    • 1
  • A. Cellino
    • 2
  • K. Muinonen
    • 3
  • P. Tanga
    • 1
  • M. Delbò
    • 1
    • 2
  • A. Dell’Oro
    • 2
  • M. Granvik
    • 3
  • D. Hestroffer
    • 4
  • S. Mouret
    • 4
  • W. Thuillot
    • 4
  • J. Virtanen
    • 3
  1. 1.Observatoire de la Côte d’AzurNice Cedex 4France
  2. 2.INAF – Osservatorio Astronomico di TorinoPino TorineseItaly
  3. 3.Astronomical ObservatoryUniversity of HelsinkiHelsinkiFinland
  4. 4.IMCCE, Observatoire de ParisParisFrance

Personalised recommendations