Earth, Moon, and Planets

, Volume 102, Issue 1–4, pp 59–65 | Cite as

Orbital Evolution of Příbram and Neuschwanstein

Article

Abstract

The orbital evolution of the two meteorites Příbram and Neuschwanstein on almost identical orbits and also several thousand clones were studied in the framework of the N-body problem for 5,000 years into the past. The meteorites moved on very similar orbits during the whole investigated interval. We have also searched for photographic meteors and asteroids moving on similar orbits. There were five meteors found in the IAU MDC database and six NEAs with currently similar orbits to Příbram and Neuschwanstein. However, only one meteor 161E1 and one asteroid 2002 QG46 had a similar orbital evolution over the last 2,000 years.

Keywords

Meteorite Meteoroid Asteroid Příbram Neuschwanstein 

Notes

Acknowledgements

This work was supported by VEGA—the Slovak Grant Agency for Science (grant No. 1/3067/06) and by Comenius University grant UK/401/2007. The authors are grateful to reviewers I. P. Williams and D. Asher for valuable suggestions.

References

  1. A. Bishoff, J. Zipfel, Mineralogy of the Neuschwanstein (EL6) Chondrite – First Results (abstract 1212) 34th Lunar and Planetary Science Conference (2003)Google Scholar
  2. W.F. Bottke, R. Jedicke, A. Morbidelli, B. Gladman, J.-M. Petit, Understanding the distribution of near-Earth objects. Science 288, 2190–2194 (2000)CrossRefADSGoogle Scholar
  3. T. Bowell, Asteroid Orbital Element Database (2007), http://www.alumnus.caltech.edu/~nolan/astorb.html
  4. P. Brown, R.E. Spalding, D.O. ReVelle, E. Tagliaferri, S.P. Worden, The flux of small near-Earth objects colliding with the Earth. Nature 420, 294–296 (2002)CrossRefADSGoogle Scholar
  5. Z. Ceplecha, Multiple fall of Příbram meteorites photographed. I. Double-station photographs of the fireball and their relations to the found meteorites. Bull. Astron. Inst. Czech. 12, 21–47 (1961)ADSGoogle Scholar
  6. I. Halliday, A.T. Blackwell, A.A. Griffin, Evidence for the existence of groups of meteorite-producing asteroidal fragments. Meteoritics 25, 93–99 (1990)ADSGoogle Scholar
  7. D.C. Jones, I.P. Williams, High inclination meteorite streams can exist. Earth Moon Planet (2007). doi:10.1007/s11038-007-9163-5 Google Scholar
  8. D.C. Jones, I.P. Williams, V. Porubčan, The Kappa Cygnid meteoroid complex. Mon. Not. R. Astron. Soc. 371, 684–694 (2006)CrossRefADSGoogle Scholar
  9. B.A. Lindblad, L. Neslušan, J. Svoreň, V. Porubčan, IAU Meteor Database of photographic orbits version 2003. Earth Moon Planet 93, 249–260 (2003)CrossRefADSGoogle Scholar
  10. L. Neslušan, IAU Meteor Database of Photographic Orbits (2003), http://www.astro.sk/~ne/IAUMDC/Ph2003/DATA2003/document.txt
  11. J. Oberst, D. Heinlein, U. Köhler, P. Spurný, The multiple meteorite fall of Neuschwanstein: circumstances of the event and meteorite search campaigns. Meteorit. Planet. Sci. 39, 1627–1641 (2004)ADSGoogle Scholar
  12. A. Pauls, B. Gladman, Decoherence time scales for “meteoroid streams”. Meteorit. Planet. Sci. 40(8), 1241–1256 (2005)ADSGoogle Scholar
  13. V. Porubčan, I.P. Williams, L. Kornoš, Associations between asteroids and meteoroid streams. Earth Moon Planet 95, 697–712 (2004)CrossRefADSGoogle Scholar
  14. D.O. ReVelle, P.G. Brown, P. Spurný, Entry dynamics and acoustics/infrasonic/seismic analysis for the Neuschwanstein meteorite fall. Meteorit. Planet. Sci. 39(10), 1605–1626 (2004)ADSCrossRefGoogle Scholar
  15. R.B. Southworth, G.S. Hawkins, Statistics of meteor streams. Smithson Contr. Astrophys. 7, 261–285 (1963)ADSGoogle Scholar
  16. P. Spurný, J. Oberst, D. Heinlein, Photographic observations of Neuschwanstein, a second meteorite from the orbit of the Příbram chondrite. Nature 423, 151–153 (2003)CrossRefADSGoogle Scholar
  17. H. Stauffer, H.C. Urey, Multiple fall of Příbram meteorites photographed. III. Rare gas isotopes in the Velká stone meteorite. Bull. Astron. Inst. Czech. 13, 106–109 (1962)ADSGoogle Scholar
  18. J.S. Stuart, R.P. Binzel, Bias-corrected population, size distribution, and impact hazard for the near-Earth objects. Icarus 170(2), 295–311 (2004)CrossRefADSGoogle Scholar
  19. J.M. Trigo-Rodríguez, E. Lyytinen, D.C. Jones, J.M. Madiedo, A.J. Castro-Tirado, I.P. Williams, J. Llorca, S. Vítek, M. Jelínek, B. Troughton, F. Gálvez, Asteroid 2002NY40 as a source of meteorite-dropping bolides. Mon. Not. R. Astron. Soc. (2007). doi:10.1111/j.1365-2966.2007.12503.x
  20. P. Vereš, L. Kornoš, J. Tóth, Search for very close approaching NEAs. Contrib. Astron. Obs. Skalnaté Pleso 36, 171–180 (2006)ADSGoogle Scholar
  21. P. Vereš, J. Klačka, L. Kómar, J. Tóth, Motion of a meteoroid released from an asteroid. Earth Moon Planet (2007). doi:10.1007/s11038-007-9187-x Google Scholar
  22. Z. Wu, I.P. Williams, On the Quadrantid meteoroid stream complex. Mon. Not. R. Astron. Soc. 259, 617–628 (1992)ADSGoogle Scholar
  23. J. Zipfel, B. Spettel, Schönbeck T, H. Palme, A. Bischoff, Bulk chemistry of the Neuschwanstein (EL6) chondrite – First results (abstract 1640) 34th Lunar and Planetary Science Conference (2003)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Astronomy, Physics of the Earth and Meteorology, Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovak Republic

Personalised recommendations