Advertisement

Earth, Moon, and Planets

, Volume 102, Issue 1–4, pp 383–394 | Cite as

Plasma and Electromagnetic Simulations of Meteor Head Echo Radar Reflections

  • Lars DyrudEmail author
  • Derek Wilson
  • Steiner Boerve
  • Jan Trulsen
  • Hans Pecseli
  • Sigrid Close
  • Chen Chen
  • Yoonjae Lee
Article

Abstract

Recently, meteor head echo detections from high powered large aperture radars (HPLA) have brought new measurements to bear on the study of sporadic interplanetary meteors. These same observations have demonstrated an ability to observe smaller meteoroids without some of the geometrical restrictions of specular radar techniques. Yet incorporating data from various radar reflection types and from different radars into a single consistent model has proven challenging. We believe this arises due to poorly understood radio scattering characteristics of the meteor plasma, especially in light of recent work showing that plasma turbulence and instability greatly influences meteor trail properties at every stage of evolution. In order to overcome some of the unknown relationships between meteoroid characteristics (such as mass and velocity) and the resulting head echo radar cross-sections (RCS), we present our results on meteor plasma simulations of head echo plasmas using particle in cell (PIC) ions, which show that electric fields strongly influence early stage meteor plasma evolution, by accelerating ions away from the meteoroid body at speeds as large as several kilometers per second. We also present the results of finite difference time domain electromagnetic simulations (FDTD), which can calculate the radar cross-section of the simulated meteor plasma electron distributions. These simulations have shown that the radar cross-section depends in a complex manner on a number of parameters. In this paper we demonstrate that for a given head echo plasma the RCS as a function of radar frequency peaks at sqrt (2*peak plasma frequency) and then decays linearly on a dB scale with increasing radar frequency. We also demonstrate that for a fixed radar frequency, the RCS increases linearly on a dB scale with increasing head echo plasma frequency. These simulations and resulting characterization of the head echo radar cross-section will both help relate HPLA radar observations to meteoroid properties and aid in determining a particular radar facility’s ability to observe various meteoroid populations.

Keywords

Meteors Radar Meteor head echoes 

References

  1. C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation. (McGraw Hill, New York, 1985)Google Scholar
  2. A.D. Boardman, Electromagnetic Surface Modes. (John Wiley & Sons Ltd., 1982)Google Scholar
  3. K.G. Burden, The Propagation of Radio Waves. (Cambridge University Press, 1985)Google Scholar
  4. Z. Ceplecha, J. Borovicka, W.G. Elford, D.O. Revelle, R.L. Hawkes, V. Porubcan, M. Simek, Meteor phenomena and bodies. Space Sci. Rev. 84, 327–471 (1998)CrossRefADSGoogle Scholar
  5. M.A. Cervera, W.G. Elford, The meteor radar response function: theory and application to narrow beam MST radar. Planet. Space Sci. 52, 591–602 (2004)CrossRefADSGoogle Scholar
  6. E. Chapin, E. Kudeki, Radar interferometric imaging studies of long duration meteor echo observed at Jicamarca. J. Geophys. Res. 99, 8937–8949 (1994)CrossRefADSGoogle Scholar
  7. F. Chen, Introduction to Plasma Physics and Controlled Fusion. vol. I, (Plenum Press, New York, 1984)Google Scholar
  8. S. Close, M. Oppenheim, S. Hunt, L. Dyrud, Scattering characteristics of high-resolution meteor head echoes detected at multiple frequencies. J. Geophys. Res. (Space Physics) 107(A10), 1295 (2002)CrossRefADSGoogle Scholar
  9. S. Close, M. Oppenheim, S. Hunt, A. Coster, A technique for calculating meteor plasma density and meteoroid mass from radar head echo scattering. Icarus 168, 43–52 (2004)CrossRefADSGoogle Scholar
  10. S. Close, P. Brown, M. Campbell-Brown, M. Oppenheim, P. Colestock, Meteor head-echo radar data: mass-velocity selection effects. Icarus (2007). doi: 10.1016/j.icarus.2006.09.07
  11. D.J. Cziczo, D.S. Thomson, D.M. Murphy, Ablation, flux, and atmospheric implications of meteors inferred from stratospheric aerosol. Science 291, 1772–1775 (2001)CrossRefADSGoogle Scholar
  12. L.P. Dyrud, M.M. Oppenheim, A.F. vom Endt, The anomalous diffusion of meteor trails. Geophys. Res. Lett. 28, 2775–2778 (2001)CrossRefADSGoogle Scholar
  13. L.P. Dyrud, M.M. Oppenheim, A.F. vom Endt, Interpretation of non-specular radar meteor trails. Geophys. Res. Lett. 29 (2002)Google Scholar
  14. L. Dyrud, K. Denney, J. Urbina, D. Janches, E. Kudeki, S. Franke, The meteor flux: it depends how you look. Earth, Moon, Planets, 95, 89–100 (2004)CrossRefADSGoogle Scholar
  15. L.P. Dyrud, L. Ray, M. Oppenheim, S. Close, K. Denney, Modeling high-power large aperture radar meteor trails. J. Atmos. Terrestrial Phys. 67(13), 1171–1177 (2005)CrossRefADSGoogle Scholar
  16. L. Dyrud et al., Plasma and electromagnetic wave simulations of meteors. J. Adv. Space Res. (2007). doi: 10.1016/j.asr.2007.03.048
  17. J.T. Fentzke, D. Janches, A semi-emperical model of the contribution from sporadic meteoroid soirces on the meteor input function in the MLT observed at Arecibo. J. Geophys. Res. (Under Review) (2007)Google Scholar
  18. D. Janches, J.D. Mathews, D.D. Meisel, Q.-H. Zhou, Micrometeor observations using the Arecibo 430 MHz radar. Icarus 145, 53–63 (2000)CrossRefADSGoogle Scholar
  19. D. Janches, C.J. Heinselman, J.L. Chau, A. Chandran, R. Woodman, Modeling the global micrometeor input function in the upper atmosphere observed by high power and large aperture radars. J. Geophys. Res. (Space Physics) 111, 7317 (2006)CrossRefGoogle Scholar
  20. D. Janches, S. Close, J.T. Fentzke, A comparison of detection sensitivity between ALTAIR and Arecibo meteor observations: Can high power and large aperture radars detect low velocity meteor head-echoes. (Accepted, Icarus, September 2007)Google Scholar
  21. W. Jones, Theory of the initial radius of meteor trains. Mon. Not. R. Astron. Soc. 275, 812–818 (1995)ADSGoogle Scholar
  22. J.D. Mathews, D. Janches, D.D. Meisel, Q.-H. Zhou, The micrometeoroid mass flux into the upper atmosphere: Arecibo results and a comparison with prior estimates. Geophys. Res. Lett. 28, 1929–1932 (2001)CrossRefADSGoogle Scholar
  23. N.J. Nickish, P.M. Franke, Finite-Difference Time-Domain Solution of Maxwell’s Equations for the Dispersive Ionosphere. (IEEE Antennas and Propagation Magazine, 1992), pp. 33–39Google Scholar
  24. M.M. Oppenheim, A.F. vom Endt, L.P. Dyrud, Electrodynamics of meteor trail evolution in the equatorial E-region ionosphere. Geophys. Res. Lett. 27, 3173–3176 (2000)CrossRefADSGoogle Scholar
  25. A. Pellinen-Wannberg, The EISCAT meteor-head method—a review recent observations. Atmos. Chem. Phys. 4, 649–655 (2004)CrossRefGoogle Scholar
  26. J.M.C. Plane, A new time-resolved model for the mesospheric Na layer: constraints on the meteor input function. Atmos. Chem. Phys. 4, 627–638 (2004)Google Scholar
  27. H.R. Skullerud, T.H. Lovaas, K. Tsurugida, Diffusion and interaction potentials for K+ ions in the noble gases. J. Phys. B At. Mol. Phys. 32, 4509–4522 (1999)CrossRefADSGoogle Scholar
  28. A. Taflove, Computational Electrodynamics—The Finite Difference Time Domain Method. (Artech House, 1995)Google Scholar
  29. A.D. Taylor, The harvard radio meteor project velocity distribution reappraised. Icarus 116, 154–158 (1995)CrossRefADSGoogle Scholar
  30. K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antenn. Propag. AP-14, 302–307 (1966)ADSGoogle Scholar
  31. Q.H. Zhou, J.D. Mathews, T. Nakumura, Implications of meteor observations by the MU radar. Geophys. Res. Lett. 28, 1399 (2001)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Lars Dyrud
    • 1
    Email author
  • Derek Wilson
    • 1
  • Steiner Boerve
    • 2
  • Jan Trulsen
    • 3
  • Hans Pecseli
    • 3
  • Sigrid Close
    • 4
  • Chen Chen
    • 1
  • Yoonjae Lee
    • 1
  1. 1.Center for Remote Sensing IncFairfaxUSA
  2. 2.Norwegian Defense Research EstablishmentKjellerNorway
  3. 3.University of OsloOsloNorway
  4. 4.Las Alamos National LaboratoryLas AlamosNew Mexico

Personalised recommendations