Earth, Moon, and Planets

, Volume 99, Issue 1–4, pp 229–240 | Cite as

A Geoneutrino Experiment at Homestake

  • N. Tolich
  • Y. -D. Chan
  • C. A. Currat
  • B. K. Fujikawa
  • R. Henning
  • K. T. Lesko
  • A. W. P. Poon
  • M. P. Decowski
  • J. Wang
  • K. Tolich
Article

Abstract

A significant fraction of the 44TW of heat dissipation from the Earth’s interior is believed to originate from the decays of terrestrial uranium and thorium. The only estimates of this radiogenic heat, which is the driving force for mantle convection, come from Earth models based on meteorites, and have large systematic errors. The detection of electron antineutrinos produced by these uranium and thorium decays would allow a more direct measure of the total uranium and thorium content, and hence radiogenic heat production in the Earth. We discuss the prospect of building an electron antineutrino detector approximately 700 m3 in size in the Homestake mine at the 4850’ level. This would allow us to make a measurement of the total uranium and thorium content with a statistical error less than the systematic error from our current knowledge of neutrino oscillation parameters. It would also allow us to test the hypothesis of a naturally occurring nuclear reactor at the center of the Earth.

Keywords

Geoneutrino Electron antineutrino Georeactor Homestake mine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apollonio M et al (2003). Eur. Phys. J. C 27:331CrossRefADSGoogle Scholar
  2. Araki T et al (2005a). Nature 436:499CrossRefADSGoogle Scholar
  3. Araki T, et al.: 2005b, Phys. Rev. Lett. 94, 081,801, arXiv:hep-ex/040635Google Scholar
  4. Boehm F. et al (2001). Phys. Rev. D 64:112,001Google Scholar
  5. Davis R., Harmer D. S., Hoffman K. C. (1968) Phys. Rev. Lett. 20:1205CrossRefADSGoogle Scholar
  6. Eder G. (1966) Nucl. Phys. 78:657CrossRefGoogle Scholar
  7. Eguchi K., et al (2003) Phys Rev Lett 90:021,802CrossRefGoogle Scholar
  8. Energy Information Administration: 2004, URL http://www.eia.doe.gov/cneaf/nuclear/page/reserves/ures.htmlGoogle Scholar
  9. Enomoto, S.: 2005, Neutrino Geophysics and Observation of Geo-Neutrinos at KamLAND. PhD thesis, Tohoku University, URL http://www.awa.tohoku.ac.jp/KamLAND/publications/Sanshiro_thesis.pdfGoogle Scholar
  10. Firestone, R. B.: 2005, URL http://ie.lbl.gov/ensdf/Google Scholar
  11. Herndon J. M. (2003) Proc. Nat. Acad. Sci. 100:3047CrossRefADSGoogle Scholar
  12. Hofmeister A, Criss R (2005) Earths heat flux revised and linked to chemistry. Tectonophysics 395:159CrossRefADSGoogle Scholar
  13. International Heat Flow Commission: 2005, URL http://www.heatflow.und.edu/Google Scholar
  14. International Nuclear Safety Center: 2005, URL http://www.insc.anl.gov/pwrmaps/index.phpGoogle Scholar
  15. Jackson M. J., Pollack H. N. (1984). J. Geophys. Res. 89:10,103ADSGoogle Scholar
  16. Kremenetsky A. A., Ovhinnikov L. N. (1986) Precambrian. Res. 33:11CrossRefGoogle Scholar
  17. Mantovani F., Carmignani L., Fiorentini G., Lissia M. (2004) Antineutrinos from earth: A reference model and its uncertanties. Phys. Rev. D 69:013,001CrossRefGoogle Scholar
  18. Marx G. (1969) Geophysics by neutrinos. Czech J. Phys. B 19:1471CrossRefADSGoogle Scholar
  19. McDonough W. F., Sun S. (1995) Chem. Geol. 120:223CrossRefGoogle Scholar
  20. Mei, D. M. and Hime, A.: 2006, Muon-induced background study for underground laboratories. Phys. Rev. D 73:053,004, arXiv:astro-ph/0512125Google Scholar
  21. Pollack H. N., Hurter S. J., Johnson J. R. (1993) Rev. Geophys. 31:267CrossRefADSGoogle Scholar
  22. Richter F. M. (1984) Earth Planet Sci. Lett 68:471CrossRefADSGoogle Scholar
  23. Rocholl A., Jochum K. P. (1993) Earth Planet Sci. Lett. 117:265CrossRefADSGoogle Scholar
  24. Rudnick R. L., Fountain D. M. (1995) Rev. Geophys. 33:267CrossRefADSGoogle Scholar
  25. Schubert G., Turcotte D. L., Olson P. (2001) Mantle Convection in the Earth and Planets. Cambridge University Press, CambridgeGoogle Scholar
  26. South Dakota Geological Survey: 2006, URL http://www.sdgs.usd.edu/Homestake.htmlGoogle Scholar
  27. Spohn T., Schubert G. (1982) J. Geophys. Res. 87:4682ADSCrossRefGoogle Scholar
  28. Taylor S. R., McLennan S. M. (1985) The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publications, OxfordGoogle Scholar
  29. World Nuclear Association: 2006, URL http://www.world-nuclear.org/info/inf48.htmGoogle Scholar
  30. Zschau J. (1978). Tidal friction in the solid earth: Constraints from the chandler wobble period. In: Brosche P, Sundermann J (eds). Space Geodesy and Geodynamics. Springer-Verlag, Berlin, pp. 315Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • N. Tolich
    • 1
  • Y. -D. Chan
    • 1
  • C. A. Currat
    • 1
  • B. K. Fujikawa
    • 1
  • R. Henning
    • 1
  • K. T. Lesko
    • 1
  • A. W. P. Poon
    • 1
  • M. P. Decowski
    • 2
  • J. Wang
    • 3
  • K. Tolich
    • 4
  1. 1.Institute for Nuclear and Particle Astrophysics and Nuclear Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Physics DepartmentUniversity of CaliforniaBerkeleyUSA
  3. 3.Earth Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.Department of PhysicsStanford UniversityStanfordUSA

Personalised recommendations