Earth, Moon, and Planets

, Volume 97, Issue 3–4, pp 341–351 | Cite as

Structure and Dynamics of the Centaur Population: Constraints on the Origin of Short-Period Comets

Original Paper

Abstract

The origin of Jupiter-family comets is linked to the intermediate stage of evolution through the Centaur region. Thus the structure of the Centaur population provides important constraints on sources of short-period comets. We show that our model of the Oort cloud evolution gives results which are consistent with the orbital distribution of observed Centaurs. In particular, it explains the existence of the large population of Centaurs with semimajor axes greater than 60 AU. The main source for these objects is the inner Oort cloud. Both Jupiter-family and Halley-type comets are produced by Centaurs originating from the Oort cloud. The injection rate for Jupiter-family comets coming from the inner Oort cloud is, at least, not less than that for a model based on the observed sample of high-eccentricity trans-Neptunian objects.

Key words:

Centaurs comets dynamics Oort Cloud origin trans-Neptunian objects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by RFBR (grants 04-02-96042 and 06-02-16512). The author thanks Hans Rickman and an anonymous referee for helpful comments.

References

  1. Bailey M. E., Emel’yanenko V. V. (1996) Mon. Not. Roy. Astron. Soc. 278: 1087–1110ADSGoogle Scholar
  2. Bailey M. E., Stagg C. R. (1988) Mon. Not. Roy. Astron. Soc. 235: 1–32ADSGoogle Scholar
  3. Duncan M. J., Levison H. F. (1997) Science 276: 1670–1672CrossRefADSGoogle Scholar
  4. Emel’yanenko V. V.: 2005, in Z. Knežević and A. Milani (eds.), Dynamics of Populations of Planetary Systems. Proceedings IAU Colloquium No. 197, 31 August-4 September 2004, Belgrade, Serbia and Montenegro, Cambridge University Press, Cambridge, pp. 323–328.Google Scholar
  5. Emel’yanenko V. V., Asher D. J., Bailey M. E. (2004) Mon. Not. Roy. Astron. Soc. 350: 161–166CrossRefADSGoogle Scholar
  6. Emel’yanenko V. V., Asher D. J., Bailey M. E. (2005) Mon. Not. Roy. Astron. Soc. 361: 1345–1351CrossRefADSGoogle Scholar
  7. Fernández J. A. (1982) Astron. J. 87: 1318–1332CrossRefADSGoogle Scholar
  8. Fernández J. A. and Gallardo T.: 1999, in J. Svoreň, E. M. Pittich, and H. Rickman (eds.), Evolution and Source Regions of Asteroids and Comets. Proceedings IAU Colloquium 173, 24–28 August 1998, Tatranská Lomnica, Slovak Republic, Astron. Inst. Slovak Acad. Sci., Tatranská Lomnica, pp. 327–338Google Scholar
  9. Fernández J. A., Gallardo T., Brunini A. (2004) Icarus 172: 372–381CrossRefADSGoogle Scholar
  10. Gomes R. S. (2003) Icarus 161: 404–418CrossRefADSGoogle Scholar
  11. Horner J., Evans N. W., Bailey M. E. (2004) Mon. Not. Roy. Astron. Soc. 355: 321–329CrossRefADSGoogle Scholar
  12. Levison H. F., Duncan M. J. (1997) Icarus 127: 13–32CrossRefADSGoogle Scholar
  13. Luu J., Marsden B. G., Jewitt D., Trujillo C. A., Hergenrother C. W., Chen J., Offut W. B. (1997) Nature 387: 573–574CrossRefADSGoogle Scholar
  14. Morbidelli A., Emel’yanenko V. V., Levison H. F. (2004) Mon. Not. Roy. Astron. Soc. 355: 935–940CrossRefADSGoogle Scholar
  15. Tiscareno M. S., Malhotra R. (2003) Astron. J. 126: 3122–3131CrossRefADSGoogle Scholar
  16. Weissman P. R., Lowry S. C. (2001) Bull. Am. Astron. Soc. 33: 1094ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of Computational and Celestial MechanicsSouth Ural UniversityChelyabinskRussia

Personalised recommendations