Earth, Moon, and Planets

, Volume 98, Issue 1–4, pp 247–290

7. Ancient Fossil Record and Early Evolution (ca. 3.8 to 0.5 Ga)

  • Purificacón López-Garcia
  • David Moreira
  • Emmanuel Douzery
  • Patrick Forterre
  • Mark Van Zuilen
  • Philippe Claeys
  • Daniel Prieur
Article

Abstract

Once life appeared, it evolved and diversified. From primitive living entities, an evolutionary path of unknown duration, likely paralleled by the extinction of unsuccessful attempts, led to a last common ancestor that was endowed with the basic properties of all cells. From it, cellular organisms derived in a relative order, chronology and manner that are not yet completely settled. Early life evolution was accompanied by metabolic diversification, i.e. by the development of carbon and energy metabolic pathways that differed from the first, not yet clearly identified, metabolic strategies used. When did the different evolutionary transitions take place? The answer is difficult, since hot controversies have been raised in recent years concerning the reliability of the oldest life traces, regardless of their morphological, isotopic or organic nature, and there are also many competing hypotheses for the evolution of the eukaryotic cell. As a result, there is a need to delimit hypotheses from solid facts and to apply a critical analysis of contrasting data. Hopefully, methodological improvement and the increase of data, including fossil signatures and genomic information, will help reconstructing a better picture of life evolution in early times as well as to, perhaps, date some of the major evolutionary transitions. There are already some certitudes. Modern eukaryotes evolved after bacteria, since their mitochondria derived from ancient bacterial endosymbionts. Once prokaryotes and unicellular eukaryotes had colonized terrestrial ecosystems for millions of years, the first pluricellular animals appeared and radiated, thus inaugurating the Cambrian. The following sections constitute a collection of independent articles providing a general overview of these aspects.

Keywords

Biomarkers Cambrian explosion early evolution microfossil origin of eukaryotes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allwood A.C.,Walter M.R., Kamber B.S., Marshall C.P., Burch I.W. (2006) Nature 441:714–718ADSGoogle Scholar
  2. Anbar A. D. (2004) Earth Planet. Sci. Lett. 217:223–236ADSGoogle Scholar
  3. Anbar A. D., Knoll A. H. (2002). Science 297:1137–1142ADSGoogle Scholar
  4. Appel P. W. U., Moorbath S., Myers J. S. (2003) Precambrian Res. 126:309–312Google Scholar
  5. Awramik S. M., Schopf J. W., Walter M. R. (1983) Precambrian Rresearch 20:357–374Google Scholar
  6. Baldauf S. L. (2003) Science 300:1703–1706ADSGoogle Scholar
  7. Barfod, G. H., Albarede, F., Knoll, A. H., Xiao, S., Telouk, P., Frei, R. and Baker, J.: 2002, Earth Planet. Sci. Lett. 201, 203–212Google Scholar
  8. Beaumont V., Robert F. (1999) Precambrian Res. 96:63–82Google Scholar
  9. Bebout G. E., Fogel M. L. (1992) Geochim. Cosmochim. Acta 56:2839–2849ADSGoogle Scholar
  10. Bekker, A., Holland, H. D., Wang, P.-L., Rumble III, D., Stein, H. J., Hannah, J. L., Coetzee, L. L. and Beukes, N. J. 2004, Nature, 117–120.Google Scholar
  11. Bell P. J. (2001) J. Mol. Evol. 53:251–256Google Scholar
  12. Bengtson S., Yue Z. (1992) Science 257:367–369ADSGoogle Scholar
  13. Benner S. A., Caraco M. D., Thomson J. M., Gaucher E. A. (2002) Science 296:864–868ADSGoogle Scholar
  14. Beukes N. J. (2004) Nature 431:522–523ADSGoogle Scholar
  15. Beyssac O., Goffé B., Chopin C., Rouzaud J. N. (2002) J. Metamor. Geol. 2002(20):859–871Google Scholar
  16. Bisset K. A. (1973) Nature 241:45ADSGoogle Scholar
  17. Boak J. L., Dymek R. F. (1982) Earth Planet. Sci. Lett. 59:155–176ADSGoogle Scholar
  18. Bodiselitsch B., Koeberl C., Master S., Reimold W. U. (2005) Science 308:239–242ADSGoogle Scholar
  19. Bosak T., Souza-Egipsy V., Corsetti F. A., Newman D. K. (2004) Geology 32:781–784ADSGoogle Scholar
  20. Brasier M., Green O. R., Jephcoat A. P., Kleppe A., Van Kranendonk M. J., Lindsay J. F., Steele A., Grassineau N. V. (2002) Nature 416:76–81ADSGoogle Scholar
  21. Brasier M., Green O.R., Lindsay J.F., McLoughlin N., Steele A., Stoakes C. (2005). Pecambrain Res140:55–02Google Scholar
  22. Brochier C., Philippe H. (2002) Nature 417:244ADSGoogle Scholar
  23. Braterman P. S., Cairns-Smith A. G., Sloper R. W. (1983) Nature 303:163–164ADSGoogle Scholar
  24. Brocks J. J., Logan G. A., Buick R., Summons R. E. (1999) Science 285:1025–1027Google Scholar
  25. Brocks J. J., Love G. D., Snape C. E., Logan G. A., Summons R. E., Buick R. (2003) Geochim. Cosmochim. Acta 67:1521–1530ADSGoogle Scholar
  26. Brown J. R., Doolittle W. F. (1997) Microbiol. Mol. Biol. Rev. 61:456–502Google Scholar
  27. Budd G. E., Jensen S. (2000) Biol. Rev. 75:253–295Google Scholar
  28. Buick R., Dunlop J. S. R. (1990) Sedimentology 37:247–277ADSGoogle Scholar
  29. Buick R., Dunlop J. S. R., Groves D. I. (1981) Alcheringa 5:161–181Google Scholar
  30. Bullen T. D., White A. F., Childs C. W., Vivit D. V., Schulz M. S. (2001) Geology 29:699–702ADSGoogle Scholar
  31. Butterfield N. J., Knoll A. H., Swett K. (1990) Science 250:104–107ADSGoogle Scholar
  32. Butterfield N. J. (2001) Precambrian Res. 111:235–256Google Scholar
  33. Batchelor M. T., Burne R. V., Henry B. I., Jackson M. J. (2004) Physica A – Stat. Mech. Appl. 337:319–326ADSGoogle Scholar
  34. Byerly G. R., Lowe D. R., Walsh M. (1986) Nature 319:489–491ADSGoogle Scholar
  35. Canfield D. E., Raiswell R. (1999) Am. J. Sci. 299:697–723Google Scholar
  36. Cavanaugh, C.: 1983, Nature 302, 340–341Google Scholar
  37. Cavalier-Smith T. (1987) Ann. N. Y. Acad. Sci. 503:17–54ADSGoogle Scholar
  38. Cavalier-Smith T. (2002) Int. J. Syst. Evol. Microbiol. 52:7–76Google Scholar
  39. Charlou J. L., Fouquet Y., Bougault H., Donval J. P., Etoubleau J., Jean-Baptiste P., Dapoigny A., Appriou P., Rona P. A. (1998) Geochim. Cosmochim. Acta 62:2323–2333ADSGoogle Scholar
  40. Chen J. -Y., Bottjer D. J., Oliveri P., Dornbos S. Q., Gao F., Ruffins S., Chi H., Li C. -W., Davidson E. H. (2004) Science 305:218–222ADSGoogle Scholar
  41. Christie-Blick N., Sohl L. E., Kennedy M. J. (1999) Science 284:1087aADSGoogle Scholar
  42. Chyba C.F. (1993). Geochim. Cosmochim Ac 57:3351–3358ADSGoogle Scholar
  43. Conway Morris S. (1998) The Crucible of Creation: The Burgess Shale and The Rise of Animals. Oxford University Press, Oxford, p 242Google Scholar
  44. Conway Morris S. (2000) Proc. Natl. Acad. Sci. USA 97:4426–4429ADSGoogle Scholar
  45. Croal L. R., Johnson C. M., Beard B. L., Newman D. K. (2004) Geochim. Cosmochim. Acta 68:1227–1242ADSGoogle Scholar
  46. Crowley T. J., Hyde W. T., Peltier W. R. (2001) Geophys. Res. Lett. 28:283–236ADSGoogle Scholar
  47. Dauphas N., van Zuilen M. A., Wadhwa M., Davis A. M., Marty B., Janney P. E. (2004) Science 306:2077–2080ADSGoogle Scholar
  48. de Ronde C. E. J., Ebbesen T. W. (1996) Geology 24:791–794ADSGoogle Scholar
  49. de Wit M. J., Hart R., Martin A., Abbott P. (1982) Econ. Geol. 77:1783–1802Google Scholar
  50. de Wit M. J., Hart R. A. (1993) Lithos 30:309–335ADSGoogle Scholar
  51. Des Marais D. J., Morre J. G. (1984) Earth Planet. Sci. Lett. 69:43–47ADSGoogle Scholar
  52. Dimroth, E.: 1982, in A. V. Sidorenko (ed.), Sedimentary Geology of the Highly Metamorphosed Precambrian Complexes, pp. 16–27Google Scholar
  53. Doolittle W. F. (1998) Trends Genet. 14:307–311CrossRefGoogle Scholar
  54. Douzery E. J. P., Snell E. A., Bapteste E., Delsuc F., Philippe H. (2004) Proc. Natl. Acad. Sci. USA 101:15386–15391ADSGoogle Scholar
  55. Durand, B.: 1980, Kerogen: Insoluble Organic Matter from Sedimentary Rocks Google Scholar
  56. Dymek R. F., Klein C. (1988) Precambrian Res. 39:247–302Google Scholar
  57. Evans D. A. D. (2000) Am. J. Sci. 300:347–433Google Scholar
  58. Fedo C. M., Whitehouse M. (2002a) Science 296:1448–1452ADSGoogle Scholar
  59. Fedo C. M., Whitehouse M. J. (2002b) Science 298:917Google Scholar
  60. Feng D. F., Cho G., Doolittle R. F. (1997) Proc. Natl. Acad. Sci. USA 94:13028–13033ADSGoogle Scholar
  61. Foriel J., Philippot P., Rey P., Somogyi A., Banks D., Ménez B. (2004) Earth Planet. Sci. Lett. 228:451–463ADSGoogle Scholar
  62. Forterre.: 2005, Bichimie 87, 793–803Google Scholar
  63. Forterre. (2005). Bichimie 87:793–803Google Scholar
  64. Forterre P., Philippe H. (1999) Biol. Bull. 196:373–375Google Scholar
  65. French B. M. (1971) Am. J. Sci. 271:37–78Google Scholar
  66. Friend C. R. L., Nutman A. P., Bennett V. C. (2002) Science 298:917Google Scholar
  67. Fuerst J. A., Webb R. (1991) Proc. Natl. Acad. Sci. USA 88:8184–8188ADSGoogle Scholar
  68. Furnes H., Banerjee N. R., Muehlenbachs K., Staudigel H., de Wit M. (2004) Science 304:578–581ADSGoogle Scholar
  69. Garcia-Ruiz J. M., Hyde S. T., Carnerup A. M., Van Kranendonk M. J., Welham N. J. (2003) Science 302:1194–1197ADSGoogle Scholar
  70. Glockner F. O., Kube M., Bauer M., Teeling H., Lombardot T., Ludwig W., Gade D., Beck A., Borzym K., Heitmann K., Rabus R., Schlesner H., Amann R., Reinhardt R. (2003) Proc. Natl. Acad. Sci. USA 30:30CrossRefGoogle Scholar
  71. Gogarten J. P., Kibak H., Dittrich P., Taiz L., Bowman E. J., Bowman B. J., Manolson M. F., Poole R. J., Date T., Oshima T., Konishi J., Denda K., Yoshida M. (1989) Proc. Natl. Acad. Sci. USA 86:6661–5ADSGoogle Scholar
  72. Gradstein, F. M., Ogg, J. G., Smith, A. G., Agterberg, F. P., Bleeker, W., Cooper, R. A., Davydov, V., Gibbard, P., Hinnov, L., M. R. H., Lourens, L., Luterbacher, H.-P., McArthur, J., Melchin, M. J., Robb, L. J., Shergold, J., Villeneuve, M., Wardlaw, B. R., Ali, J., Brinkhuis, H., Hilgen, F. J., Hooker, J., Howarth, R. J., Knoll, A. H., Laskar, J., Monechi, S., Powell, J., Plumb, K. A., Raffi, I., Röhl, U., Sanfilippo, A., Schmitz, B., Shackleton, N. J., Shields, G. A., Strauss, H., Dam, J. V., Veizer, J., Kolfschoten, T.v. and Wilson, D.: 2004, A Geological Time Scale 2004, Cambridge University, Cambridge, 610 ppGoogle Scholar
  73. Gray M. W., Doolittle W. F. (1982) Microbiol. Rev. 46:1–42Google Scholar
  74. Grotzinger J. P., Knoll A. H. (1999) Annu. Rev. Earth Planet. Sci. 27:313–358ADSGoogle Scholar
  75. Grotzinger J. P., Rothman D. H. (1996) Nature 383:423–425ADSGoogle Scholar
  76. Gupta R. S., Golding G. B. (1996) Trends Biochem. Sci. 21:166–71Google Scholar
  77. Haeckel E. (1866) Generelle Morphologie der Organismen: Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie. Georg Reimer, BerlinGoogle Scholar
  78. Han T. M., Runnegar B. (1992) Science 257:232–235ADSGoogle Scholar
  79. Hanor J. S., Duchac K. C. (1990) J. Geol. 98:863–877ADSGoogle Scholar
  80. Hayes, J. M., Kaplan, I. R. and Wedeking, W.: 1983, in J.W. Schopf (ed.), Earth’s Earliest Biosphere, Its Origin and Evolution, Princeton University Press, pp. 93–134Google Scholar
  81. Hedges S. B., Blair J. E., Venturi M. L., Shoe J. L. (2004) BMC Evol. Biol. 4:2Google Scholar
  82. Hedges S. B., Chen H., Kumar S., Wang D. Y., Thompson A. S., Watanabe H. (2001) BMC Evol. Biol. 1:4Google Scholar
  83. Hoffman H. J., Grey K., Hickman A. H., Thorpe R. (1999) Geol. Soc. Am. Bull. 111:1256–1262Google Scholar
  84. Hoffman P. F., Kaufman A. J., Halverson G. P., Schrag D. P. (1998a) Science 281:1342–1346ADSGoogle Scholar
  85. Hoffman P. F., Schrag D. P. (1999). Science 284:1087aADSGoogle Scholar
  86. Hoffman P. F., Schrag D. P., Halverson G. P., Kaufman J. A., (1998b) Science 282:1644Google Scholar
  87. Hofmann H. J., Narbonne G. M., Aitken J. D. (1990) Geology 18:1199–1202ADSGoogle Scholar
  88. Hoffmann K. -H., Condon D. J., Bowring S. A., Crowley J. L., (2004) Geology 32:817–820ADSGoogle Scholar
  89. Holm N. G., Charlou J. L. (2001) Earth Planet. Sci. Lett. 191:1–8ADSGoogle Scholar
  90. House C. H., Schopf J. W., McKeegan K. D., Coath C. D., Harrison T. M., Stetter K. O. (2000) Geology 28:707–710ADSGoogle Scholar
  91. House C. H., Schopf J. W., Stetter K. O. (2003) Org. Geochem. 34:345–356Google Scholar
  92. Hyde W. T., Crowley T. J., Baum S. K., Peltier W. R. (2000) Nature 405:425–429ADSGoogle Scholar
  93. Iwabe N., Kuma K., Hasegawa M., Osawa S., Miyata T. (1989) Proc. Natl. Acad. Sci. USA 86:9355–9359ADSGoogle Scholar
  94. Javaux E. J., Knoll A. H., Walter M. (2003) Orig. Life Evol. Biosph. 33:75–94ADSGoogle Scholar
  95. Javaux E. J., Knoll A. H., Walter M. R. (2001) Nature 412:66–69ADSGoogle Scholar
  96. Javaux E. J., Knoll A. H., Walter M. R. (2004) Geobiology 2:121–132Google Scholar
  97. Jekely G. (2003) Bioessays 25:1129–1138Google Scholar
  98. Jenkins G. S., Scotese C. R. (1998) Science 282:1644ADSGoogle Scholar
  99. Johnson, C. M., Beard, B. L., and Albarède, F.: 2004a, Geochemistry of Non-traditional Stable Isotopes, Mineralogical Society of AmericaGoogle Scholar
  100. Johnson C. M., Beard B. L., Beukes N. J., Klein C., O’Leary J. (2003) Contr. Mineral. Petrol. 144:523–547ADSGoogle Scholar
  101. Johnson, C. M., Beard, B. L. Roden, E. E., Newman, D. K. and Nealson, K. H.: 2004b, in Geochemistry of Non-traditional Stable Isotopes, vol. 55, Mineralogical Society of America, pp. 359–402Google Scholar
  102. Johnson C. M., Roden E. E., Welch S. A., Beard B. L. (2005) Geochim. Cosmochim. Acta 69:963–993ADSGoogle Scholar
  103. Kah L. C., Bartley J. K. (2001) Precambrian Res. 111:1–283Google Scholar
  104. Karl, D. M., Wirsen, C. O., and Jannasch, H. W.: 1980, Science 207, 1345–1347Google Scholar
  105. Kimura H., Watanabe Y. (2001) Geology 29:995–998ADSGoogle Scholar
  106. Kirschner M., Gerhart J. (1998): Proc. Natl. Acad. Sci. USA 95:8420–8427ADSGoogle Scholar
  107. Kitchen N. E., Valley J. W. (1995) J. Metamor. Geol. 13:577–594Google Scholar
  108. Knauth L. P., Lowe D. R. (1978) Earth Planet. Sci. Lett. 41:209–222ADSGoogle Scholar
  109. Knoll A. H. (1999) Science 285:1025–1026Google Scholar
  110. Knoll A. H. (2003) Life on a Young Planet; The First Three Billion Years of Evolution on Earth. Princeton University Press, Princeton, 277 pGoogle Scholar
  111. Knoll A. H., Holland H.D. (1994) Proterozoic oxygen and evolution: an update. In: Stanley S. M. (eds) Biological Responses to Past Global Changes. National Academy Press, Washington D.C., pp. 21–33Google Scholar
  112. Knoll A. H., Walter, M. R., Narbonne, G. M., Christie-Blick, N. (2004) Science 305:621–622Google Scholar
  113. Konhauser K. O., Hamade T., Raiswell R., Morris R. C., Ferris F. G., Southam G., Canfield D. E. (2002) Geology 30:1079–1082ADSGoogle Scholar
  114. Kudryavtsev A. B., Schopf J. W., Agresti D. G., Wdowiak T. J. (2001) Proc. Natl. Acad. Sci. 98:823–826ADSGoogle Scholar
  115. Lake J. A., Rivera M. C. (1994) Proc. Natl. Acad. Sci. USA 91:2880–2881ADSGoogle Scholar
  116. Lancet M. S., Anders E. (1970) Science 170:980–982ADSGoogle Scholar
  117. Lepland A., Arrhenius G., Cornell D. (2002) Precambrian Res. 118:221–241Google Scholar
  118. Lepland A., van Zuilen M. A., Arrhenius A., Whitehouse M., Fedo C. M. (2005) Geology 33:77–79ADSGoogle Scholar
  119. Lindsay J. F., Brasier M. D., McLoughlin N., Green O. R., Fogel M., Steele A., Mertzman S. A. (2005) Precambrian Res. 143:1–22Google Scholar
  120. López-García P., Moreira D. (1999) Trends Biochem. Sci. 24:88–93Google Scholar
  121. Lowe D. R. (1983) Precambrian Res. 19:239–283Google Scholar
  122. Lowe D. R. (1994) Geology 22:387–390ADSGoogle Scholar
  123. Lowe D. R., Byerly G. R. (1986) Nature 324:245–248ADSGoogle Scholar
  124. Lowe, D. R. and Byerly, G. R.: 1999, Geologic Evolution of the Barberton Greenstone Belt, South Africa, The Geological Society of AmericaGoogle Scholar
  125. Lowe D.R., Byerly G.R. (2003). Gealogy 32:909–912ADSGoogle Scholar
  126. Madigan M. T., Martinko J. M., Parker J. (2003) Brock Biology of Microorganisms. Prentice Hall, Upper Saddle River, NJ, USAGoogle Scholar
  127. Margulis L. (1981) Symbiosis in cell evolution. W. H. Freeman, San Francisco, CAGoogle Scholar
  128. Margulis L., Fester R. (1993): Symbiosis as a Source of Evolutionary Innovation. MIT Press, Cambridge, MAGoogle Scholar
  129. Martin W., Hoffmeister M., Rotte C., Henze K. (2001) Biol. Chem. 382:1521–1539Google Scholar
  130. Martin W., Muller M. (1998) Nature 392:37–41ADSGoogle Scholar
  131. McCaffrey M. A., Moldowan J. M., Paul A. Lipton, Summons R. E., Peters K. E., Jeganathan A., Watt D. S. (1994) Geochim. Cosmochim. Acta 58:529–532ADSGoogle Scholar
  132. McCollom T. M., Seewald J. S. (2001) Geochim. Cosmochim. Acta 65:3769–3778ADSGoogle Scholar
  133. McCollom T.M., Seewald J.S. (2006). Earth Planet Sci Lett 243:74–84ADSGoogle Scholar
  134. Mojzsis S. J., Arrhenius G., McKeegan K. D., Harrison T. M., Nutman A. P., Friend C. R. L. (1996) Nature 384:55–59ADSGoogle Scholar
  135. Mojzsis S. J., Coath C. D., Greenwood J. P., McKeegan K. D., Harrison T. M. (2003) Geochim. Cosmochim. Acta 67:1635–1658ADSGoogle Scholar
  136. Mojzsis S. J., Harrison T. M. (2002a) Earth Planet. Sci. Lett. 202:563–576ADSGoogle Scholar
  137. Mojzsis S. J., Harrison T. M. (2002b) Science 298:917Google Scholar
  138. Mojzsis, S. J., Harrison, T. M., Arrhenius, G., McKeegan, K. D. and Grove, M.: 1999, Nature 400, 127–128Google Scholar
  139. Mojzsis, S. J., McKeegan, K. D. and Harrison, T. M.: 2005, Life on Earth before 3.83 Ga? Carbonaceous inclusions from Akilia (West Greenland). NAI Annual Meeting abstractGoogle Scholar
  140. Moreira D., López-García P. (1998) J. Mol. Evol. 47:517–530Google Scholar
  141. Narbonne G. M. (1998) GSA Today 8:1–6Google Scholar
  142. Narbonne, G. M.: 2005, THE EDIACARA BIOTA: Neoproterozoic Origin of Animals and Their Ecosystems: Annual Review of Earth and Planetary Sciences, vol. 33, pp. 421–442.Google Scholar
  143. Nei M., Xu P., Glazko G. (2001) Proc. Natl. Acad. Sci. USA 98:2497–2502ADSGoogle Scholar
  144. Nier A. O. (1950) Phys. Rev. 77:789–793ADSGoogle Scholar
  145. Nijman W., de Bruijne C. H., Valkering M. E. (1999) Precambrian Res. 95:247–274Google Scholar
  146. Nisbet E. G., Sleep N. H. (2001) Nature 409:1083–1091ADSGoogle Scholar
  147. Nutman A. P., McGregor VR., Friend C. R. L., Bennett V. C., Kinny P. D. (1996) Precambrian Res. 78:1–39Google Scholar
  148. Nutman, A. P. and Friend, C. R. L.: 2006, Precambrian Res.Google Scholar
  149. Ohmoto H., Kakegawa T., Lowe D. R. (1993) Science 262:555–557ADSGoogle Scholar
  150. Ourisson G., Rohmer M., Poralla K. (1987) Annu. Rev. Microbiol. 41:301–333Google Scholar
  151. Palin J. M. (2002) Science 298:961Google Scholar
  152. Papineau D., Mojzsis S. J., Karhu J. A., Marty B. (2005) Chem. Geol. 216:37–58Google Scholar
  153. Paris I., Stanistreet I. G., Hughes M. J. (1985) J. Geol. 93:111–129ADSGoogle Scholar
  154. Parkes, R. J., Cragg, B. A. and Wellsbury, P.: 2000, Hydrogeol. J. 8, 11–28Google Scholar
  155. Pasteris J. D., Wopenka B. (2002) Nature 420:476–477ADSGoogle Scholar
  156. Pasteris J. D., Wopenka B. (2003) Astrobiology 3:727–738ADSGoogle Scholar
  157. Pearson A., Budin M., Brocks J. J. (2003) Proc. Natl. Acad. Sci. USA 100:15352–15357ADSGoogle Scholar
  158. Perry E. C. Jr., Ahmad S. N. (1977) Earth Planet. Sci. Lett. 36:280–284ADSGoogle Scholar
  159. Pflug H. D., Jaeschke-Boyer H. (1979) Nature 280:483–486ADSGoogle Scholar
  160. Philippe H., Lopez P., Brinkmann H., Budin K., Germot A., Laurent J., Moreira D., Muller M., Le Guyader H. (2000) Proc. R. Soc. Lond. B Biol. Sci. 267:1213–1221Google Scholar
  161. Pinti D. L., Hashizume K., Matsuda J. (2001) Geochim. Cosmochim. Acta 65:2301–2315ADSGoogle Scholar
  162. Poole A. M., Jeffares D. C., Penny D. (1998) J. Mol. Evol. 46:1–17CrossRefGoogle Scholar
  163. Rasmussen B. (2000) Nature 405:676–679ADSGoogle Scholar
  164. Reanney D. C. (1974): Theor. Biol. 48:243–251Google Scholar
  165. Reid R. P., Visscher P. T., Decho A. W., Stolz J. F., Bebout B. M., Dupraz C., Macintyre I. G., Paerl H. W., Pinckney J. L., Prufert-Bebout L., Steppe T. F., Des Marais D. J. (2000) Nature 406:989–992ADSGoogle Scholar
  166. Rivera M. C., Jain R., Moore J. E., Lake J. A. (1998) Proc. Natl. Acad. Sci. USA 95:6239–6244ADSGoogle Scholar
  167. Robert F. (1988) Geochim. Cosmochim. Acta 52:1473–1478ADSGoogle Scholar
  168. Robert, F., Selo, M., Hillion, F. and Skrzypczak, 2005, Lunar Planet. Sci. XXXVI, 2 ppGoogle Scholar
  169. Rose N. M., Rosing M. T., Bridgwater D. (1996) Am. J. Sci. 296:1004–1044Google Scholar
  170. Rosing M., Frei R. (2003) Earth Planet. Sci. Lett. 217:237–244ADSGoogle Scholar
  171. Rosing M. T. (1999) Science 283:674–676ADSGoogle Scholar
  172. Rosing M. T., Rose N. M., Bridgwater D., Thomsen H. S. (1996) Geology 24(1):43–46ADSGoogle Scholar
  173. Rouxel O., Dobbek N., Ludden J., Fouquet Y. (2003) Chem. Geol. 202:155–182Google Scholar
  174. Sano Y., Terada K., Takahashi Y., Nutman A. P. (1999) Nature 400:127ADSGoogle Scholar
  175. Sapp J. (2005): Microbiol. Mol. Biol. Rev. 69:92–305Google Scholar
  176. Schidlowski M. (1988) Nature 333:988Google Scholar
  177. Schidlowski M. (2001) Precambrian Res. 106:117–134Google Scholar
  178. Schidlowski M., Appel P. W. U., Eichmann R., Junge C. E. (1979) Geochim. Cosmochim. Acta 43:89–199CrossRefGoogle Scholar
  179. Schopf, J. W.: 1983, Earth’s Earliest Biosphere, Its Origin and Evolution, Princeton University PressGoogle Scholar
  180. Schopf J. W. (1993) Science 260:640–646ADSGoogle Scholar
  181. Schopf J. W. (2000) Proc. Natl. Acad. Sci. 97:947–6953ADSGoogle Scholar
  182. Schopf, J. W. and Klein, C.: 1992, The Proterozoic Biosphere: A Multidisciplinary Study, Cambridge University PressGoogle Scholar
  183. Schopf J. W., Kudryavtsev A. (2005) Geobiology 3:1–12Google Scholar
  184. Schopf J. W., Kudryavtsev A., Agresti D. G., Wdowiak T. J., Czaja A. D. (2002) Nature 416:73–76ADSGoogle Scholar
  185. Searcy, D. G.: 1992, in H. Hartman and K. Matsuno (eds.), The Origin and Evolution of the Cell, World Scientific, Singapore, pp. 47–78Google Scholar
  186. Seilacher A. (1992) J. Geol. Soc. Lon. 149:607–613Google Scholar
  187. Sheehan, P. M., Coorough, P. J. and Fastovski, D. E.: 1996, in G. Ryder, D. Fastovski, and S. Gartner (eds.), The Cretaceous-Tertiary Event and Other Catastrophes in Earth History, vol. 307, Geological Society of America Special Paper, pp. 477–490Google Scholar
  188. Shen Y., Buick R., Canfield D. E. (2001) Nature 410:77–81ADSGoogle Scholar
  189. Simpson A. G., Roger A. J. (2002) Curr. Biol. 12:R691–693Google Scholar
  190. Siever R. (1994) Geochim. Cosmochim. Acta 56:3265–3272ADSGoogle Scholar
  191. Sogin M. L. (1991): Curr. Opin. Genet. Dev. 1:457–463Google Scholar
  192. Stanier R. Y., Van Niel C. B. (1962) Arch. Mikrobiol. 42:17–35Google Scholar
  193. Stolz J. F., Feinstein T. N., Salsi J., Visscher P. T., Reid R. P. (2001) Am. Mineral. 86:826–833Google Scholar
  194. Takemura M. (2001) J. Mol. Evol. 52:419–425Google Scholar
  195. Tice M. M., Bostick B. C., Lowe D. R. (2004) Geology 32:37–40ADSGoogle Scholar
  196. Tice M. M., Lowe D. R. (2004) Nature 431:549–552ADSGoogle Scholar
  197. Ueno Y., Isozaki Y. (2001) Int. Geol. Rev. 43:196–212Google Scholar
  198. Ueno Y., Yoshioka H., Maruyama S., Isozaki Y. (2004) Geochim. Cosmochim. Acta 68:573–589ADSGoogle Scholar
  199. Ueno Y., Yurimoto H., Yoshioka H., Komiya T., Maruyama S. (2002) Geochim. Cosmochim. Acta 66:1257–1268ADSGoogle Scholar
  200. Van Kranendonk M. J., Pirajno F. (2004) Geochem.: Explor. Environ. Anal. 4:253–278Google Scholar
  201. Van Kranendonk M. J., Webb G. E., Kamber B. S. (2003) Geobiology 1:91–108Google Scholar
  202. van Zuilen M. A., Lepland A., Arrhenius G. (2002) Nature 418:627–630ADSGoogle Scholar
  203. van Zuilen M. A., Lepland A., Teranes J. L., Finarelli J., Wahlen M., Arrhenius A. (2003) Precambrian Res. 126:331–348Google Scholar
  204. van Zuilen M. A., Mathew K., Wopenka B., Lepland A., Marti K., Arrhenius A. (2005) Geochim. Cosmochim. Acta 69:1241–1252ADSGoogle Scholar
  205. Villarreal, L. P. (ed.): 2005, Viruses and the Evolution of Life, ASM press, WashingtonGoogle Scholar
  206. Walsh M. (1992) Precambrian Res. 54:271–293ADSCrossRefGoogle Scholar
  207. Walter M. R., Buick R., Dunlop J. S. R. (1980) Nature 284:443–445ADSGoogle Scholar
  208. Wang D. Y., Kumar S., Hedges S. B. (1999) Proc. R. Soc. Lond. B, Biol. Sci. 266:163–171Google Scholar
  209. Westall F., de Wit M. J., Dann J., van der Gaast S., de Ronde C. E. J., Gerneke D. (2001) Precambrian Res. 106:93–116Google Scholar
  210. Westall F., Folk R. L. (2003) Precambrian Res. 126:313–330Google Scholar
  211. Whitehouse M., Kamber B. S., Moorbath S. (1999) Chem. Geol. 160:204–221Google Scholar
  212. Whitehouse M. J., Kamber B. S., Fedo C. M., Lepland A. (2005) Chem. Geol. 222:112–131Google Scholar
  213. Woese C. R., Fox G. E. (1977) Proc. Natl. Acad. Sci. USA 74:5088–5090ADSGoogle Scholar
  214. Woese C. R., Kandler O., Wheelis M. L. (1990) Proc. Natl. Acad. Sci. USA 87:4576–4579ADSGoogle Scholar
  215. Xiao S., Zhang J., Knoll A. H. (1998) Nature 391:553–558ADSGoogle Scholar
  216. Yamaguchi K. E., Johnson C. M., Beard B. L., Ohmoto H. (2005) Chem. Geol. 218:135–169Google Scholar
  217. Yoon H. S., Hackett J. D., Ciniglia C., Pinto G., Bhattacharya D. (2004): Mol. Biol. Evol. 21:809–818Google Scholar
  218. Zillig W. (1991): Curr. Opin. Genet. Dev. 1:544–551Google Scholar
  219. Zuckerkandl E., Pauling L. (1965): J. Theor. Biol. 8:357–366Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Purificacón López-Garcia
    • 1
  • David Moreira
    • 1
  • Emmanuel Douzery
    • 2
  • Patrick Forterre
    • 3
  • Mark Van Zuilen
    • 4
  • Philippe Claeys
    • 5
  • Daniel Prieur
    • 6
  1. 1.Unité d’Ecologie, Systématique et EvolutionUniversité Paris-SudOrsayFrance
  2. 2.Institut des Sciences de l’EvolutionUniversité Montpellier IIMontpellierFrance
  3. 3.Institut de Génétique et MicrobiologieUniversité Paris-SudOrsayFrance
  4. 4.Equipe Géobiosphère Actuelle et PrimitiveInstitut de Physique du GlobeParisFrance
  5. 5.Department of GeologyVrije UniversiteitBrusselsBelgium
  6. 6.Université Bretagne OccidentaleBrestFrance

Personalised recommendations