Advertisement

Earth, Moon, and Planets

, Volume 97, Issue 3–4, pp 189–201 | Cite as

Analysing the New Saturnian Rings, R/2004 S1 and R/2004 S2

  • S. M. Giuliatti Winter
  • R. Sfair
  • D. C. Mourão
  • T. A. Bastos
Article

Abstract

The Cassini-Huygens arrival into the Saturnian system brought a large amount of data about the satellites and rings. Two diffuse rings were found in the region between the A ring and Prometheus. R/2004 S1 is coorbital to Atlas and R/2004 S2 is close to Prometheus. In this work we analysed the closest approach between Prometheus and both rings. As a result we found that the satellite removes particles from R/2004 S2 ring. Long-term numerical simulations showed that some particles can cross the F ring region . The well known region of the F ring, where small satellites are present and particles are being taking from the ring, gains a new insight with the presence of particles from R/2004 S2 ring. The computation of the Lyapunov Characteristic Exponent reveled that the R/2004 S2 ring lies in a chaotic region while R/2004 S1 ring and Atlas are in a stable region. Atlas is responsible for the formation of three regimes in the R/2004 S1 ring, as expected for a satellite embedded in a ring.

Keywords

Lyapunov Characteristic Exponent numerical simulations planetary rings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

SMGW thanks FUNDUNESP, RS and DCM thank CNPq and TAB thanks PAE/UNESP for the financial support.

References

  1. Borderies N. et al. (1983) Icarus 53:84–89CrossRefADSGoogle Scholar
  2. Dermott S. F., Murray C. D. (1981). Icarus 48:1–11CrossRefADSGoogle Scholar
  3. Giuliatti Winter S. M., et al. (2000) Plan. Space Sci. 48:817–827CrossRefADSGoogle Scholar
  4. Giuliatti Winter S. M., et al. (2004). Astron. Astrophys. 418:759–764zbMATHCrossRefADSGoogle Scholar
  5. Goldreich P., Tremaine S. (1979) Nature 277:97–99CrossRefADSGoogle Scholar
  6. Hänninen J. (1993) Icarus 103:104–123CrossRefADSGoogle Scholar
  7. Lissauer J. J., Peale S. S. (1986). Icarus 67:358–374CrossRefADSGoogle Scholar
  8. Murray C. D., Dermott S. (1999). Solar System Dynamics. Cambridge Univ Press, LondonzbMATHGoogle Scholar
  9. Murray C. D., Giuliatti Winter S. M. (1996). Nature 380:139–141CrossRefADSGoogle Scholar
  10. Murray C. D. et al. (1997). Icarus 129:304–316CrossRefADSGoogle Scholar
  11. Murray C. D. et al. (2005) Nature 437:1326–1329CrossRefADSGoogle Scholar
  12. Null G. W. et al. (1981). Astron. J. 86:456–468CrossRefADSGoogle Scholar
  13. Press, W. H., et al.: 1990, Numerical Recipes, Cambridge University Press, CambridgeGoogle Scholar
  14. Porco C. C. et al. (2005). Science 307:1226–1236CrossRefADSGoogle Scholar
  15. Showalter M. R., Burns J. A. (1982) Icarus 52:526–544CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. M. Giuliatti Winter
    • 1
  • R. Sfair
    • 1
  • D. C. Mourão
    • 1
  • T. A. Bastos
    • 1
  1. 1.UNESP – Campus de GuaratinguetáGuaratinguetaSão PauloBrazil

Personalised recommendations