Earth, Moon, and Planets

, Volume 97, Issue 3–4, pp 459–470 | Cite as

A Widebinary Solar Companion as a Possible Origin of Sedna-like Objects

  • John J. Matese
  • Daniel P. Whitmire
  • Jack J. Lissauer
Article

Abstract

Sedna is the first inner Oort cloud object to be discovered. Its dynamical origin remains unclear, and a possible mechanism is considered here. We investigate the parameter space of a hypothetical solar companion which could adiabatically detach the perihelion of a Neptune-dominated TNO with a Sedna-like semimajor axis. Demanding that the TNO’s maximum value of osculating perihelion exceed Sedna’s observed value of 76 AU, we find that the companion’s mass and orbital parameters (mc, ac, qc, Qc, ic) are restricted to

$$m_c>rapprox 5\hskip.25em\hbox{M}_{\rm J}\left(\frac{Q_c}{7850\hbox{ AU}} \frac{q_c}{7850\hbox{ AU}}\right)^{3/2}$$

during the epoch of strongest perturbations. The ecliptic inclination of the companion should be in the range \(45{\deg}\lessapprox i_c\lessapprox 135{\deg}\) if the TNO is to retain a small inclination while its perihelion is increased. We also consider the circumstances where the minimum value of osculating perihelion would pass the object to the dynamical dominance of Saturn and Jupiter, if allowed. It has previously been argued that an overpopulated band of outer Oort cloud comets with an anomalous distribution of orbital elements could be produced by a solar companion with present parameter values

$$m_c\approx 5\hskip.25em\hbox{M}_{\rm J}\left(\frac{9000\hbox{ AU}}{a_c}\right)^{1/2}.$$

If the same hypothetical object is responsible for both observations, then it is likely recorded in the IRAS and possibly the 2MASS databases.

Keywords

Kuiper Belt Oort Cloud comets:2003 VB12 comets:general binaries:general 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown M. E., Trujillo C., Rabinowicz D. (2004). ApJ 617: 645CrossRefADSGoogle Scholar
  2. Burrows A., Sudarsky D., Lunine J. I. (2003). ApJ 596: 587CrossRefADSGoogle Scholar
  3. Chauvin G. et al. (2004). A&A 425(2): L29MathSciNetCrossRefADSGoogle Scholar
  4. Emel’yanenko V. V., Asher D., Bailey M. (2002). MNRAS 338(2): 443CrossRefADSGoogle Scholar
  5. Goldreich P. (1965). Rev. Geophys. 4: 411ADSGoogle Scholar
  6. Gomes R. S., Gallardo T., Fernández J. A., Brunini A. (2005). CeMDA 91: 109MATHADSGoogle Scholar
  7. Gomes, R. S., Matese, J. J., and Lissauer, J. J.: 2006, Icarus (in press)Google Scholar
  8. Matese J. J., Whitman P. G., Whitmire D. P. (1999). Icarus 141: 354CrossRefADSGoogle Scholar
  9. Matese, J. J. and Lissauer, J. J.: 2002, in B. Warm bein (ed.), Proceedings of Astroids Comets Meteors 2002, ESA sp 500, p. 309Google Scholar
  10. Morbidelli A., Levison H. (2004). AJ 128: 2564CrossRefADSGoogle Scholar
  11. Wolfram Research: 2003, Mathematica 5 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • John J. Matese
    • 1
  • Daniel P. Whitmire
    • 1
  • Jack J. Lissauer
    • 2
  1. 1.Department of PhysicsUniversity of LouisianaLafayetteUSA
  2. 2.Space Science and Astrobiology DivisionMS 245-3, NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations