Advertisement

Earth, Moon, and Planets

, Volume 97, Issue 1–2, pp 107–126 | Cite as

Long term dynamical evolution and classification of classical TNOs

  • Patryk Sofia Lykawka
  • Tadashi Mukai
Article

Abstract

Classical trans-Neptunian objects (TNOs) are believed to represent the most dynamically pristine population in the trans-Neptunian belt (TNB) offering unprecedented clues about the formation of our Solar System. The long term dynamical evolution of classical TNOs was investigated using extensive simulations. We followed the evolution of more than 17000 particles with a wide range of initial conditions taking into account the perturbations from the four giant planets for 4 Gyr. The evolution of objects in the classical region is dependent on both their inclination and semimajor axes, with the inner (a<45 AU) and outer regions (a>45 AU) evolving differently. The reason is the influence of overlapping secular resonances with Uranus and Neptune (40–42 AU) and the 5:3 (a∼ ∼42.3 AU), 7:4 (a∼ ∼43.7 AU), 9:5 (a∼ ∼44.5 AU) and 11:6 (a∼ ∼ 45.0 AU) mean motion resonances strongly sculpting the inner region, while in the outer region only the 2:1 mean motion resonance (a∼ ∼47.7 AU) causes important perturbations. In particular, we found: (a) A substantial erosion of low-i bodies (i<10°) in the inner region caused by the secular resonances, except those objects that remained protected inside mean motion resonances which survived for billion of years; (b) An optimal stable region located at 45 AU<a<47 AU, q>40 AU and i>5° free of major perturbations; (c) Better defined boundaries for the classical region: 42–47.5 AU (q>38 AU) for cold classical TNOs and 40–47.5 AU (q>35 AU) for hot ones, with i=4.5° as the best threshold to distinguish between both populations; (d) The high inclination TNOs seen in the 40–42 AU region reflect their initial conditions. Therefore they should be classified as hot classical TNOs. Lastly, we report a good match between our results and observations, indicating that the former can provide explanations and predictions for the orbital structure in the classical region.

Keywords

Classical TNOs kuiper belt resonances solar system trans-Neptunian belt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to thank very much Jonathan Horner for a dedicated review that greatly improved both the readability and science of this paper. This research was supported by “The 21st Century COE Program of Origin and Evolution of Planetary Systems” of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

  1. Allen R. L., Bernstein G. M., Malhotra R. (2001). Astroph. J. 549:L241–L244CrossRefADSGoogle Scholar
  2. Brown M. E. (2001). Astron. J. 121:2804–2814CrossRefADSGoogle Scholar
  3. Brunini A. and Melita M. D. (2002). Icarus 160:32–43CrossRefADSGoogle Scholar
  4. Chiang E. I., and Jordan A. B. (2002). Astron. J. 124:3430–3444CrossRefADSGoogle Scholar
  5. Doressoundiram A. (2003). Earth, Moon, and Planets 92:131–144CrossRefADSGoogle Scholar
  6. Duncan M. J. and Levison H. F. (1997). Science 276:1670–1672CrossRefADSGoogle Scholar
  7. Emel’yanenko V. V., Asher D. J., Bailey M. E. (2005). MNRAS 361:1345–1351CrossRefADSGoogle Scholar
  8. Gladman B., Holman M., Grav T., Kaavelars J. J., Nicholson P., Aksnes K., Petit J. M. (2002). Icarus 157:269–279CrossRefADSGoogle Scholar
  9. Gomes R. S. (2003). Icarus 161:404–418CrossRefADSGoogle Scholar
  10. Gomes R. S., Morbidelli A. and Levison H. F. (2004). Planetary migration in a planetesimal disk: why did Neptune stop at 30AU? Icarus 170:492–507CrossRefADSGoogle Scholar
  11. Horner J., Evans N. W., Bailey M. E. and Asher D. J., (2003). MNRAS 343:1057–1066CrossRefADSGoogle Scholar
  12. Jewitt D. C., Luu J. X., (1993). Nature 362: 730–732CrossRefADSGoogle Scholar
  13. Knezevic Z., Milani A., Farinella P., Froeschle Ch., Froeschle Cl., (1991). Icarus 93:316–330CrossRefADSGoogle Scholar
  14. Kuchner M. J., Brown M. E. and Holman M. (2002). Astron. J. 124:1221–1230CrossRefADSGoogle Scholar
  15. Levison H. F., Stern A. S. (2001). Astron. J. 121:1730–1735CrossRefADSGoogle Scholar
  16. Levison H. F., Morbidelli A. (2003). Nature 426:419–421CrossRefADSGoogle Scholar
  17. Lykawka P .S., Mukai T. (2005). Plan. and Space Sci. 53:1175–1187CrossRefADSGoogle Scholar
  18. Malhotra R., (1995). Astron. J. 110: 420–429CrossRefADSGoogle Scholar
  19. Morbidelli A., Brown M. E. and Levison H. F. (2003). Earth, Moon, and Planets 92:1–27CrossRefADSGoogle Scholar
  20. Nesvorny D. and Roig F. (2001). Icarus 150:104–123CrossRefADSGoogle Scholar
  21. Peixinho N., Boehnhardt H., Belskaya I., Doressoundiram A., Barucci M. A., Delsanti A. (2004). Icarus 170:153–166CrossRefADSGoogle Scholar
  22. Trujillo C. A., Brown M. E. (2001). Astroph. J. 554:L95–L98CrossRefADSGoogle Scholar
  23. Yu Q., Tremaine S. (1999). Astron. J. 118:1873–1881CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Graduate School of Science and Technology – Earth and Planetary System SciencesKobe UniversityKobeJapan

Personalised recommendations